Sr. No.
Time: $1 \frac{11 / 4}{}$ Hours
Max. Marks : 100
Total Questions : 100
Roll No. (in figures) \qquad (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHD-EE-2023-24/(Statistics)(SET-Y)/(A)

1. The mean of Binomial distribution $B(n, p)$ is :
(1) $n p$
(2) $n p-1$
(3) $n p-2$
(4) $n p-3$
2. Given that $E[X+4]=10$ and $E[X+4]^{2}=116$, then $\operatorname{Var}[X]$ is equal to :
(1) 4
(2) 8
(3) 12
(4) 16
3. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of ' a ' is given by :
(1) 0.4
(2) 0.5
(3) 0.3
(4) 0.1
4. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of $P(X \leq 1.5)$ is given by :
(1) 0.5
(2) 0.81
(3) 0.19
(4) 0.17
5. The moment generating function of Poisson Distribution is :
(1) $e^{\lambda}\left(e^{t}-1\right)$
(2) $e^{t}\left(e^{\lambda}-1\right)$
(3) $e^{t}-1$
(4) $e^{\lambda}\left(1-e^{t}\right)$
6. Which of the following is the median of the exponential distribution with parameter λ ?
(1) λ
(2) $-\lambda^{-1}$
(3) λ^{-1}
(4) λ^{-2}
7. The Quartile Deviation of the normal distribution is :
(1) Q. D. $=\frac{2}{4} \sigma$
(2) Q.D. $=\frac{2}{3} \sigma$
(3) Q.D. $=\frac{2}{5} \sigma$
(4) Q.D. $=\frac{3}{4} \sigma$
8. If A and B are two independent events, then $P(\bar{A} \cap \bar{B})$ is equal to :
(1) $P(\bar{A}) P(\bar{B})$
(2) $1-P(A \cup B)$
(3) $[1-P(A)][1-P(B)]$
(4) All of the above
9. If event A and event B has occurred and it is known that $P(B)=1$, the conditional probability $P(A / B)$ is equal to :
(1) $P(A)$
(2) $P(B)$
(3) One
(4) Zero
10. The recurrence formula for geometric distribution is given by :
(1) $p(x+i)=q p(x+i)$
(2) $p(x)=q p(x+i)$
(3) $p(x+i)=q p(x)$
(4) $p(x)=p(x+i)$
11. The correct relationship between A.M, G.M., and H.M. is :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M
12. Average wages of workers of factory are Rs. 550 per month and the standard deviation of wages is 110 . The coefficients of variation is :
(1) 30%
(2) 15%
(3) 500%
(4) 20%
13. If the mode of a frequency distribution is 16 and its mean is 16 , then the median of the
distribution is :
(1) 0
(2) 16
(3) 32
(4) 8
14. If Quartile deviation of a set of observations is given as 6.4 and the value of first quartile is 5 . What is the value of the third quartile?
(1) 12
(2) 15.3
(3) 17.8
(4) 20.2
15. For a leptokurtic frequency curve, the measures of kurtosis is :
(1) 0
(2) -3
(3) less than 1
(4) greater than 3
16. Standard error of the sample correlation coefficient ' r ' is based on ' n ' paired values is :
(1) $\frac{1+r^{2}}{\sqrt{n}}$
(2) $\frac{1+r^{2}}{n}$
(3) $\frac{1-r^{2}}{\sqrt{n}}$
(4) $\frac{1+r^{2}}{\sqrt{n-1}}$

PHD-EE-2023-24/(Statistics)(SET-Y)/(A)

A
17. Given the following set of equations :

$$
\begin{gathered}
x_{1}+4 x_{2}-x_{3}=3 \\
5 x_{1}+2 x_{2}+3 x_{3}=4
\end{gathered}
$$

The basic feasible solution involving x_{1} and x_{2} is :
(1) $\left(\frac{5}{9}, \frac{11}{18}, 0\right)$
(2) $\left(\frac{5}{9}, 0,0\right)$
(3) $\left(0, \frac{11}{18}, 0\right)$
(4) $\left(\frac{2}{9}, 0, \frac{3}{14}\right)$
18. The range of a partial correlation coefficient is :
(1) 0 to ∞
(2) $-\infty$ to ∞
(3) 0 to 1
(4) -1 to 1
19. The term regression was introduced by:
(1) Sir Francis Galton
(2) R.A. Fisher
(3) Karl Pearson
(4) P.C. Mahalanobis
20. If Regression Equations are :

$$
\begin{gathered}
6 y=5 x+90 \\
15 x=8 y+30
\end{gathered}
$$

And the variance of $x=4$, then the correlation coefficient between ' x ' and ' y ' is :
(1) 0.45
(2) 0.67
(3) 0.78
(4) 0.88
21. The pgf of a certain distribution is given as :
$P(s)=3 s^{2}-2 s+6$
What is the mean of this distribution ?
(1) 2
(2) 3
(3) 4
(4) 5
22. The relation between student's $-t$ and F -distribution is :
(1) $F_{1,1}=t_{n}^{2}$
(2) $F_{n, 1}=t_{1}^{2}$
(3) $F_{1, n}=t_{\infty}^{2}$
(4) $F_{1, n}=t_{n}^{2}$
23. The minimum variance unbiased estimator of θ^{2} based on a sample of size ' n ' from $N(\theta 1)$ is :
(1) $\bar{X}^{2}-1 / n$
(2) $\bar{X}^{2}+1 / n$
(3) $\sum\left(X_{i}-\bar{X}^{2}\right) / n$
(4) $\sum\left(X_{i}-\bar{X}^{2}\right) /(n-1)$
24. The Bayes estimator of a parameter under squared error loss function is :
(1) Posterior mean
(2) Posterior median
(3) Posterior mode
(4) Posterior variance
25. The decision criteria in SPRT depends on the function of :
(1) Type I error
(2) Type II error
(3) Both type I and type II error
(4) Neither Type I nor Type II error
26. What is an unbiased estimator of θ for the distribution $f(x, \theta)=\theta e^{-\theta} x, x \geq 0$?
(1) $\frac{(n-1) \bar{X}}{n}$
(2) $\frac{(n-1)}{n \bar{X}}$
(3) $\frac{\bar{X}}{n-1}$
(4) $\frac{1}{(n-1) \bar{X}}$
27. Given a random sample :

$$
f(x, \theta)=\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha
$$

What is the MLE of α ?
(1) X
(2) $2 X$
(3) $\frac{X^{2}}{2}$
(4) $\frac{X}{2}$
28. For a particular hypothesis test, the probabilities of type I and type II errors are respectively, 0.05 and 0.09 . The power of the test is :
(1) 0.95
(2) 0.14
(3) 0.86
(4) 0.91
29. A random sample of 100 articles are taken from a batch of 2000 articles shows that the average diameter of the articles is 0.354 and a standard deviation 0.048 . What is the 95% confidence interval for the average diameter of the batch ?
(1) $(0.2934,0.4235)$
(2) $(0.3448,0.3632)$
(3) $(0.3021,0.3824)$
(4) $(0.3923,0.4212)$
30. Which of the following is true ?
(1) Unbiased estimator is always efficient.
(2) Consistent estimator is always unbiased.
(3) Unbiased estimator is always consistent.
(4) MLE is always a function of sufficient statistic.

A

31. In SRSWOR, if $\bar{y}=50, n=100, N=500$, then the estimated population total is :
(1) 250
(2) 500
(3) 25000
(4) 2500
32. Headquarters of Field Operations Division of NSSO are located at :
(1) New Delhi
(2) Kolkata
(3) Bombay
(4) Chennai
33. The variance of stratified sampling mean $\bar{Y}_{s t}$ is :
(1) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) W_{h}^{2} S_{h}^{2}$
(2) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
(3) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) S_{h}^{2^{*}}$
(4) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
34. In simple random sampling, the biased of ratio estimator is unbiased if :
(1) They are independent
(2) They are uncorrelated
(3) They are correlated
(4) They are dependent
35. Wishart distribution (σ^{2}, n) follows :
(1) $\sigma^{2} \chi^{2}$ distribution
(2) $N\left(0, \sigma^{2}\right)$ distribution
(3) $\frac{e^{-n} \sigma^{2}}{n}$ distribution
(4) Beta distribution
36. Hotelling T^{2} can be approximated to statistic ' F ' with usual notation as test criteria following the inequality for rejection as :
(1) $T^{2}>F_{p, n-p ; \alpha} f$ or $n>p$
(2) $T^{2}<F_{p, n-p ; \alpha} f$ or $n>p$
(3) $T^{2}>\frac{n-1}{n-p} F_{p, n-p ; \alpha} f$ or $n>p$
(4) $T^{2}>\frac{n-p}{n-1} F_{p, n-p ; \alpha} f$ or $n>p$
37. A measure of association between a discriminant function and a set of dummy variables that define the group membership is known as :
(1) Multivariate Correlation
(2) Multicollinearity
(3) Canonical Correlation
(4) Biserial Correlation

PHD-EE-2023-24/(Statistics)(SET-Y)/(A)

38. The ratio of number of replications required in CRD and RBD for the same amount of information is :
(1) $3: 2$
(2) $5: 3$
(3) $5: 4$
(4) $3: 5$
39. In a Randomised Block Design, we always have :
(1) Number of blocks $=$ Number of treatments
(2) Number of blocks $>$ Number of treatments
(3) Number of blocks < Number of treatments
(4) All of the above
40. The additional effect gained due to combined effect of two or more factors is known as :
(1) Main Effect
(2) Interaction Effect
(3) Either (1) or (2)
(4) Neither (1) or (2)
41. For a standard $n \times n$ Latin Square, how many different Latin squares can be obtained with the same standard?
(1) $n!(n-2)$!
(2) $(n-1)$! $(n-2)$!
(3) n ! $(n-1)$!
(4) $n!(n+1)$!
42. The condition for the time reversal test to hold good with usual notations is :
(1) $P_{01} \times P_{10}=1$
(2) $P_{10} \times P_{01}=0$
(3) $P_{01} / P_{10}=1$
(4) $P_{01}+P_{10}=1$
43. Weight in Laspeyre's price index number is known as
(1) Quantity during the current year
(2) Quantity in the base year
(3) Price during the current year
(4) Price in the base year
44. In India, the collection of vital statistics started for first time in :
(1) 1720
(2) 1886
(3) 1969
(4) 1946

A
45. Fisher's ideal formula does not satisfy \qquad
(1) Time Reversal Test
(2) Circular Test
(3) Factor Reversal Test
(4) Unit Test
46. If l_{x} is the number of persons living at the age ' x ' and ' L_{x} ' the number of persons living in the mid of ' x ' and ' $(x+1)$ ' years, then the relation between l_{x} and L_{x} is :
(1) $L_{x}=\frac{1}{2}\left(l_{x}+l_{x+1}\right)$
(2) $L_{x}=\left(\frac{x}{2}+l_{x}\right)$
(3) $L_{x}=l_{x+\frac{1}{2}}$
(4) $L_{x}=l_{x+\frac{3}{2}}$
47. Fertility rates mainly depend on :
(1) Total female population
(2) Total population
(3) Female population of child bearing age
(4) Number of newly born babies
48. If the quantity demanded of a commodity is unresponsive to change in prices, then the demand of that commodity is :
(1) Perfectly Inelastic
(2) Elastic
(3) Unit Elastic
(4) Inelastic
49. The elasticity for the demand of the durable goods is :
(1) Zero
(3) Greater than unity
(2) Equal to unity
(4) Less than Unity
50. Consider the following matrix :
$P=\left[\begin{array}{cccc}0 & 0 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 0\end{array}\right]$
If P is a stochastic matrix, then which of the following is not true ?
(1) P is Ergodic
(3) P is not Regular
(2) P is Regular
(4) Both (1) and (3)
51. Service time in queueing theory is usually assumed to follow :
(1) Poisson Distribution
(2) Erlang Distribution
(3) Exponential Distribution
(4) Normal Distribution
52. For MIMI1 queueing system, the expected number of customers in systems are :
(1) $L_{S}=\left(\frac{\lambda}{\mu-\lambda}\right)$
(2) $L_{S}=\left(\frac{\lambda-\mu}{\lambda}\right)$
(3) $L_{S}=\left(\frac{\mu}{\mu-\lambda}\right)$
(4) $L_{S}=\left(\frac{\mu-\lambda}{\lambda}\right)$
53. Which of the following relationships is not true ?
(1) $W_{S}=W_{q}+\frac{1}{\mu}$
(2) $L_{S}=\lambda W_{S}$
(3) $L_{S}=L_{q}+\frac{1}{\lambda}$
(4) $L_{q}=\lambda W_{q}$
54. Maximize $Z=10 x_{1}+25 x_{2}$, subject to $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 3, x_{1}+x_{2} \leq 5$
(1) 80 at $(3,2)$
(2) 75 at $(0,3)$
(3) 30 at $(3,0)$
(4) 95 at $(2,3)$
55. Which variable is added for the less than or equal to type of constraint ?
(1) Slack
(2) Surplus
(3) Artificial
(4) Basic
56. The convex combination of two points $\bar{x}_{1}, \bar{x}_{2} \in X$ is referred as :
(1) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(2) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
(3) $\bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(4) $\lambda \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
57. The assignment problem is :
(1) non-linear programming problem
(2) dynamic programming problem
(3) integer linear programming problem
(4) integer non-linear programming problem

PHD-EE-2023-24/(Statistics)(SET-Y)/(A)

58. The order of Convergence of Secant Method is :
(1) 2.4
(2) 2
(3) 1.62
(4) 1
59. If $f(0)=3, f(1)=5, f(3)=21$, then the unique polynomials of degree 2 or less using Newton divided difference interpolation will be :
(1) $2 x^{2}+2 x+1$
(2) $2 x^{2}-3 x+1$
(3) $2 x^{2}+3$
(4) $x^{2}+3 x-2$
60. The third difference of a cubic $\Delta^{3} y$ function are :
(1) Constant
(2) Not constant
(3) Variables
(4) None of the above
61. Let ' f ' be a non-constant entire function. Which of the following properties is possible for ' f ' for each $z \in \mathbb{C}$?
(1) $\operatorname{Re} f(z)=\operatorname{Im} f(z)$
(2) $|\mathrm{f}(\mathrm{z})|<1$
(3) $\operatorname{Im}(z)<0$
(4) $f(z) \neq 0$
62. Let ' f ' and ' g ' be mesomorphic function on (c. If ' f ' has a zero of order ' k ' at $z=a$ and z has a pole of order ' m ' at $z=0$, then $g(f(z))$ has :
(1) a zero of order km at $z=a$
(2) a pole of order km at $z=a$
(3) a zero of order $\mathrm{lk}-\mathrm{ml}$ at $z=a$
(4) a pole of order $\mid \mathrm{k}-\mathrm{ml}$ at $z=a$
63. The set of vectors $X_{1}=(2,1,4), X_{2}=(-3,2,-1), X_{3}=(1,-3,-2)$ is :
(1) Linearly dependent
(2) Linearly independent
(3) Both of them
(4) None of these
64. Let a be 2×2 with $\operatorname{Det}(\mathrm{A})=1 \& \operatorname{Trace}(\mathrm{~A})=3$, then $\operatorname{Trace}\left(A^{2}\right)$ is :
(1) 7
(2) 8
(3) 9
(4) 10
65. If A is (2×2) matrix over $I R$ with $\operatorname{Det}(A+I)=1+\operatorname{Det}(A)$, then we can conclude that :
(1) $\operatorname{Det}(A)=0$
(2) $\mathrm{A}=0$
(3) $\operatorname{Tr}(\mathrm{A})=0$
(4) A is non-singular
66. If A is a square matrix, then $A+A^{\prime}, A A^{\prime}$ and $A^{\prime} A$ are :
(1) Symmetric
(2) Skew Symmetric
(3) Hermitian
(4) Skew Hermitian
67. If $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ provided limit on RHS exists. This result is known as :
(1) Cauchy 1st Theorem on Limits
(2) Cauchy 2nd Theorem on Limits
(3) Squeeze Principle
(4) Leibnitz' Rule
68. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is :
(1) 1
(2) 0
(3) e
(4) 2
69. Consider the sequence $a_{n}=\left(1+(-1)^{n} \frac{1}{n}\right)^{n}$ then :
(1) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=1$
(2) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=e$
(3) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
(4) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=e, \lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
70. If X and Y are standard normal variates with correlation coefficient ' ρ ' between them, then the correlation coefficient between X^{2} and Y^{2} is :
(1) $2 \rho-1$
(2) ρ^{2}
(3) ρ
(4) $\sqrt{\rho}$
71. If the random variables X, Y and Z have the means $\mu_{x}=5, \mu_{y}=7$ and $\mu_{z}=4$; $\sigma_{X}^{2}=10, \sigma_{Y}^{2}=14$ and $\sigma_{Z}^{2}=20 ; \operatorname{Cov}(X, Y)=1, \operatorname{Cov}(X, Z)=3$ and $\operatorname{Cov}(Y, Z)=2$, then what is the covariance of $U=X+4 Y+2 Z$ and $V=3 X-Y-Z$?
(1) -76
(2) 82
(3) -82
(4) 76
72. Neelam has appeared in an examination which follows multiple choice questions, each having five possible answers. The probability that she knows an answer is 0.75 . If she does not know an answer, she will guess, with the conditional probability $1 / 5$ of being correct. The conditional probability that Neelam knows the answer, given that she gives the correct answer is :
(1) 0.25
(2) 0.80
(3) 0.90
(4) 0.94

A
73. A drunkard takes a forward step with probability ' p ' and a backward step with probability ' q '. After taking 11 steps, the probability that he is the one step away from the starting point is :
(1) $p^{6}+q^{6}$
(2) $2\left(p^{6}+q^{5}\right)$
(3) $462 p^{6} q^{5}$
(4) $462 p^{5} q^{5}$
74. For the sequence $\left\{X_{n}\right\}$ of independent random variables the following are defined :

$$
P\left(X_{k}= \pm 2^{k}\right)=2^{-(2 k+1)} ; P\left(X_{k}=0\right)=1-2^{-2 k}
$$

Which of the following are not correct(s)?
(a) WLLN holds because $E\left(X_{k}\right)=0$ and $\lim _{n \rightarrow \infty} \frac{B_{n}}{n^{2}} \rightarrow 0$ where $B_{n}=\operatorname{Var}\left(\Sigma_{i=1}^{n} X_{i}\right)$
(b) Weak law of large numbers holds by Khinchin's theorem because $E\left(X_{k}\right)$ is finite.
(c) WLLN holds since X_{k} are identically distributed.

Select the correct answer using code given below :
(1) (b) and (c) only
(2) (a) and (b) only
(3) (a) and (c) only
(4) (a), (b) and (c) only
75. If $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and σ_{X-Y}^{2} are the variances of X, Y and $X-Y$ respectively, then what is the coefficient of correlation between ' X ' and ' Y ' ?
(1) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X-Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(2) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(3) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X+Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(4) $\frac{\sigma_{X}^{2}-\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
76. Let ' X ' and ' Y ' be independent Gamma $G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$ random variables respectively. Then $\frac{X}{X+Y}$ is distributed as :
(1) $G\left(\alpha_{1}+\alpha_{2}, \beta\right)$
(2) $\beta_{1}\left(\alpha_{1}, \alpha_{2}\right)$
(3) $U(0,1)$
(4) $G\left(\alpha_{1}, \alpha_{2}\right)$
77. The Joint Density Function of ' X ' and ' Y ' is given by :

$$
f(x, y)=\left\{\begin{array}{cc}
2 e^{-x} e^{-2 y} & 0<x<\infty, 0<y<\infty \\
0 & \text { otherwise }
\end{array}\right\}
$$

What is the value of $\mathrm{P}(\mathrm{X}<\mathrm{Y})$?
(1) $1 / 3$
(2) $1 / 2$
(3) $1 / 4$
(4) $1 / 6$
78. For a certain frequency distribution, the numerical computation yields the following :

Mean $=62$, Median $=65$, Coefficient of skewness $=-0.3$, then the standard deviation
is equal to :
(1) 10
(2) 30
(3) 90
(4) 300
79. Let ' X ' be a random variable having Probability Density Function :

$$
f(x)=\left\{\begin{array}{cc}
x / 2 & 0<x<1 \\
1 / 2 & 1<x \leq 2 \\
(3-x) / 3 & 2<x \leq 3
\end{array}\right\}
$$

Then $P(1.5<X<2.5 I X>1)$ equals to :
(1) $3 / 8$
(2) $5 / 8$
(3) $1 / 2$
(4) $1 / 4$
80. Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be i.i.d. random variables with $E\left(X_{i}\right)=\mu$ and $\mathrm{E}\left(X_{i}^{2}\right)<\infty$, then the consistent estimator for μ is :
(1) $\frac{2 i^{2}}{n(n+1) \sum X_{i}}$
(2) $\frac{2}{n(n+1)} \sum i X_{i}$
(3) $\frac{2 i}{n(n+1)} \sum X_{i}$
(4) $\frac{2}{n(n+1)} \sum i^{2} X_{i}$
81. Let Y_{1}, Y_{2}, Y_{3} be uncorrelated observations with common variance σ^{2} and expectations given by $\left(Y_{1}\right)=\beta_{1}, E\left(Y_{2}\right)=\beta_{2}$ and $E\left(Y_{3}\right)=\beta_{1}+\beta_{2}$ where β_{1} and β_{2} are unknown parameters. The best linear unbiased estimator of $\beta_{1}+\beta_{2}$ is :
(1) $\frac{1}{2}\left(Y_{1}+Y_{2}+Y_{3}\right)$
(2) $Y_{1}+Y_{2}$
(3) $\frac{1}{2}\left(Y_{1}+Y_{2}+2 Y_{3}\right)$
(4) $\frac{1}{2}\left(Y_{1}-Y_{2}-Y_{3}\right)$

A
82. Under the regulatory conditions, if λ_{n} is the likelihood ratio, then the asymptotic distribution of $-2 \log \lambda_{n}$ as $n \rightarrow \infty$ is :
(1) Normal distribution
(2) Chi square distribution
(3) F-distribution
(4) T distribution
83. If the pdf of a random variable ' X ' is $f(x, \theta)=1-\theta^{2}, 0 \leq x \leq \frac{1}{1-\theta^{2}}$ and if we reject $H_{0}: \theta=\frac{1}{2}$ against the alternative $H_{1}: \theta=\frac{3}{4}$ whenever $x \geq 1$, then what is the power of the test?
(1) $\frac{15}{16}$
(2) $\frac{1}{2}$
(3) $\frac{7}{16}$
(4) $\frac{9}{16}$
84. If $X_{1}, X_{2}, \ldots \ldots X_{n}$ is a random sample form poisson distribution with parameter ' λ ', then the maximum likelihood estimator of $\log \lambda$ is given by :
(1) $e^{\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)}$
(2) $\log \left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)$
(3) $e^{\left(\sum_{i=1}^{n} X_{i}\right)}$
(4) $\log \left(\sum_{i=1}^{n} X_{i}\right)$
85. Which of the following could be used as a test for autocorrelation up to third order ?
(1) Spearmen Correlation test
(2) The Breusch-Goldfrey test
(3) The Durbin Watson test
(4) The Gold-Fled Quandt test
86. The following equation represent a simultaneous equation model :

$$
\begin{gathered}
K_{1}=\alpha_{1} K_{2}+\beta_{1} Z_{1}+u_{1} \\
K_{2}=\alpha_{2} K_{1}+\beta_{2} Z_{2}+u_{2}
\end{gathered}
$$

OLS will suffer from simultaneous bias if :
(1) u_{1} is correlated with Z_{1}
(2) Z_{1} is correlated with Z_{2}
(3) K_{2} is correlated with u_{1}
(4) K_{1} is correlated with u_{1}
87. Having known the last census population ' P_{0} ' and growth rate ' r ', the population after ' n ' years based on compound interest formula will be :
(1) $\hat{P}_{t}=P_{0}(1+r)^{n}$
(2) $\hat{P}_{t}=P_{0}(1+n)^{r}$
(3) $\hat{P}_{t}=P_{0} /(1+r)^{n}$
(4) $\hat{P}_{t}=P_{0} /(1+n)^{r}$
88. Vital rates are customarily expressed as :
(1) Percentages
(2) Per Thousand
(3) Per Million
(4) Per Trillion
89. Age - Specific mortality rates fail to reveal :
(1) Mortality conditions.
(2) Age-distribution of persons
(3) Sex Ratio
(4) All of the above
90. The relationship between NRR and GRR is :
(1) NRR and GRR are usually equal
(2) NRR can never exceed GRR
(3) NRR is generally greater than GRR
(4) None of the above
91. Construction of life tables is based on the assumption that :
(1) Age - specific death rates are constant at all ages.
(2) Death rates are uniformly distributed between two birth days.
(3) Mortality rates are same for male and female populations.
(4) All of the above
92. A life table consists of :
(1) Seven columns
(2) Eight columns
(3) Six columns
(4) Nine Columns

A

93. King's abridged life tables are based in the calculation of :
(1) Central mortality rate
(2) The number of persons and deaths for central age in the interval $\{x, x+n\}$
(3) Both (1) and (2)
(4) Neither (1) nor (2)
94. If Laspeyre's price index number is 324 and Paasche's Price Index number is 144 , then Fisher's Ideal Index Number is :
(1) 180
(2) 234
(3) 216
(4) 222
95. If a negative value appears in the solution values $\left(X_{B}\right)$ column of the simplex table, then :
(1) The solution is optimal
(3) The solution is unbounded
(2) The solution is infeasible
(4) All of the above
96. The maximum number of extreme points for a LPP
$\operatorname{Max} Z=c x$
Subject to

$$
A x=b ; x \geq 0
$$

Where A is $m \times n$ matrix is equal to :
(1) $\frac{m!}{n!(m-n)!}$
(2) $\frac{n!}{m!(n-m)!}$
(3) $(m-n)$
(4) $m n$
97. In a basic feasible solution of an $m \times n$ transportation problem, the number of positive allocations is atmost :
(1) $m+n$
(2) $m+n-1$
(3) $m-n$
(4) $m+n-2$
98. The necessary and sufficient condition for the existence of a feasible solution of a transportation problem is :
(1) $\sum a_{i}=\sum b_{j}$
(2) $\sum a_{i} \neq \sum b_{j}$
(3) $\sum a_{i}=0$
(4) $\sum b_{j}=0$

PHD-EE-2023-24/(Statistics)(SET-Y)/(A)

99. Consider the linear programming problem :
$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Then its solution is :
(1) $x_{1}=3, x_{2}=1, \operatorname{Max} Z=11$
(2) $x_{1}=1, x_{2}=3, \operatorname{Max} Z=10$
(3) $x_{1}=2, x_{2}=1, \operatorname{Max} Z=11$
(4) $x_{1}=1, x_{2}=2, \operatorname{Max} Z=10$
100. The probability of living of a person in the age group ' x ' to ' $(x+n)^{\prime}$ ' can be obtained by the formula :
(1) l_{x+n} / l_{x}
(2) $\left(l_{x}-l_{x+n}\right) / l_{x+n}$
(3) $\left(l_{x}-l_{x+n}\right) / l_{x}$
(4) l_{x} / l_{x+n}

Time: $11 / 4$ Hours

Roll No. (in figures)
Max. Marks : 100
Total Questions : 100 (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name
Date of Examination \qquad

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booket.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been suppled correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHD-EE-2023-24/(Statistics)(SET-Y)/(B)

1. For a standard $n \times n$ Latin Square, how many different Latin squares can be obtained with the same standard?
(1) $n!(n-2)$!
(2) $(n-1)!(n-2)$!
(3) $n!(n-1)$!
(4) $n!(n+1)$!
2. The condition for the time reversal test to hold good with usual notations is :
(1) $P_{01} \times P_{10}=1$
(2) $P_{10} \times P_{01}=0$
(3) $P_{01} / P_{10}=1$
(4) $P_{01}+P_{10}=1$
3. Weight in Laspeyre's price index number is known as \qquad
(1) Quantity during the current year
(2) Quantity in the base year
(3) Price during the current year
(4) Price in the base year
4. In India, the collection of vital statistics started for first time in :
(1) 1720
(2) 1886
(3) 1969
(4) 1946
5. Fisher's ideal formula does not satisfy
(1) Time Reversal Test
(2) Circular Test
(3) Factor Reversal Test
(4) Unit Test
6. If l_{x} is the number of persons living at the age ' x ' and ' L_{x} ' the number of persons living in the mid of ' x ' and ' $(x+1)$ ' years, then the relation between l_{x} and L_{x} is:
(1) $L_{x}=\frac{1}{2}\left(l_{x}+l_{x+1}\right)$
(2) $L_{x}=\left(\frac{x}{2}+l_{x}\right)$
(3) $L_{x}=l_{x+\frac{1}{2}}$
(4) $L_{x}=l x+\frac{3}{2}$
7. Fertility rates mainly depend on :
(1) Total female population
(2) Total population
(3) Female population of child bearing age
(4) Number of newly born babies
8. If the quantity demanded of a commodity is unresponsive to change in prices, then the demand of that commodity is :
(1) Perfectly Inelastic
(2) Elastic
(3) Unit Elastic
(4) Inelastic
9. The elasticity for the demand of the durable goods is :
(1) Zero
(2) Equal to unity
(3) Greater than unity
(4) Less than Unity
10. Consider the following matrix :
$P=\left[\begin{array}{cccc}0 & 0 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 0\end{array}\right]$

If P is a stochastic matrix, then which of the following is not true?
(1) P is Ergodic
(2) P is Regular
(3) P is not Regular
(4) Both (1) and (3)
11. If the random variables X, Y and Z have the means $\mu_{x}=5, \mu_{y}=7$ and $\mu_{z}=4$; $\sigma_{X}^{2}=10, \sigma_{Y}^{2}=14$ and $\sigma_{Z}^{2}=20 ; \operatorname{Cov}(X, Y)=1, \operatorname{Cov}(X, Z)=3$ and $\operatorname{Cov}(Y, Z)=2$, then what is the covariance of $U=X+4 Y+2 Z$ and $V=3 X-Y-Z$?
(1) -76
(2) 82
(3) -82
(4) 76
12. Neelam has appeared in an examination which follows multiple choice questions, each having five possible answers. The probability that she knows an answer is 0.75 . If she does not know an answer, she will guess, with the conditional probability $1 / 5$ of being correct. The conditional probability that Neelam knows the answer, given that she gives the correct answer is :
(1) 0.25
(2) 0.80
(3) 0.90
(4) 0.94
13. A drunkard takes a forward step with probability ' p ' and a backward step with probability ' q '. After taking 11 steps, the probability that he is the one step away from the starting point is :
(1) $p^{6}+q^{6}$
(2) $2\left(p^{6}+q^{5}\right)$
(3) $462 p^{6} q^{5}$
(4) $462 p^{5} q^{5}$
14. For the sequence $\left\{X_{n}\right\}$ of independent random variables the following are defined: $P\left(X_{k}= \pm 2^{k}\right)=2^{-(2 k+1)} ; P\left(X_{k}=0\right)=1-2^{-2 k}$
Which of the following are not correct(s) ?
(a) WLLN holds because $E\left(X_{k}\right)=0$ and $\lim _{n \rightarrow \infty} \frac{B_{n}}{n^{2}} \rightarrow 0$ where $B_{n}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$
(b) Weak law of large numbers holds by Khinchin's theorem because $E\left(X_{k}\right)$ is finite.
(c) WLLN holds since X_{k} are identically distributed.

Select the correct answer using code given below :
(1) (b) and (c) only
(2) (a) and (b) only
(3) (a) and (c) only
(4) (a), (b) and (c) only
15. If $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and σ_{X-Y}^{2} are the variances of X, Y and $X-Y$ respectively, then what is the coefficient of correlation between ' X ' and ' Y ' ?
(1) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X-Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(2) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(3) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X+Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(4) $\frac{\sigma_{X}^{2}-\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
16. Let ' X ' and ' Y ' be independent Gamma $G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$ random variables respectively. Then $\frac{X}{X+Y}$ is distributed as :
(1) $G\left(\alpha_{1}+\alpha_{2}, \beta\right)$
(2) $\beta_{1}\left(\alpha_{1}, \alpha_{2}\right)$
(3) $U(0,1)$
(4) $G\left(\alpha_{1}, \alpha_{2}\right)$
17. The Joint Density Function of ' X ' and ' Y ' is given by :
$f(x, y)=\left\{\begin{array}{cc}2 e^{-x} e^{-2 y} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{array}\right\}$
What is the value of $\mathrm{P}(\mathrm{X}<\mathrm{Y})$?
(1) $1 / 3$
(2) $1 / 2$
(3) $1 / 4$
(4) $1 / 6$
18. For a certain frequency distribution, the numerical computation yields the following : Mean $=62$, Median $=65$, Coefficient of skewness $=-0.3$, then the standard deviation is equal to :
(1) 10
(2) 30
(3) 90
(4) 300
19. Let ' X ' be a random variable having Probability Density Function :

$$
f(x)=\left\{\begin{array}{cc}
x / 2 & 0<x<1 \\
1 / 2 & 1<x \leq 2 \\
(3-x) / 3 & 2<x \leq 3
\end{array}\right\}
$$

Then $\mathrm{P}(1.5<\mathrm{X}<2.5 I \mathrm{X}>1)$ equals to :
(1) $3 / 8$
(2) $5 / 8$
(3) $1 / 2$
(4) $1 / 4$
20. Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be i.i.d. random variables with $E\left(X_{i}\right)=\mu$ and $\mathrm{E}\left(X_{i}^{2}\right)<\infty$, then the consistent estimator for μ is :
(1) $\frac{2 i^{2}}{n(n+1) \sum X_{i}}$
(2) $\frac{2}{n(n+1)} \sum i X_{i}$
(3) $\frac{2 i}{n(n+1)} \sum X_{i}$
(4) $\frac{2}{n(n+1)} \sum i^{2} X_{i}$
21. Construction of life tables is based on the assumption that :
(1) Age - specific death rates are constant at all ages
(2) Death rates are uniformly distributed between two birth days.
(3) Mortality rates are same for male and female populations.
(4) All of the above
22. A life table consists of :
(1) Seven columns
(2) Eight columns
(3) Six columns
(4) Nine Columns
23. King's abridged life tables are based in the calculation of :
(1) Central mortality rate
(2) The number of persons and deaths for central age in the interval $\{x, x+n\}$
(3) Both (1) and (2)
(4) Neither (1) nor (2)
24. If Laspeyre's price index number is 324 and Paasche's Price Index number is 144 , then Fisher's Ideal Index Number is :
(1) 180
(2) 234
(3) 216
(4) 222
25. If a negative value appears in the solution values $\left(X_{B}\right)$ column of the simplex table, then :
(1) The solution is optimal
(2) The solution is infeasible
(3) The solution is unbounded
(4) All of the above
26. The maximum number of extreme points for a LPP
$\operatorname{Max} Z=c x$
Subject to

$$
A x=b ; x \geq 0
$$

Where A is $m \times n$ matrix is equal to :
(1) $\frac{m!}{n!(m-n)!}$
(2) $\frac{n!}{m!(n-m)!}$
(3) $(m-n)$
(4) $m n$
27. In a basic feasible solution of an $m \times n$ transportation problem, the number of positive allocations is atmost :
(1) $m+n$
(2) $m+n-1$
(3) $m-n$
(4) $m+n-2$
28. The necessary and sufficient condition for the existence of a feasible solution of a transportation problem is :
(1) $\sum a_{i}=\sum b_{j}$
(2) $\sum a_{i} \neq \sum b_{j}$
(3) $\sum a_{i}=0$
(4) $\sum b_{j}=0$
29. Consider the linear programming problem :
$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Then its solution is :
(1) $x_{1}=3, x_{2}=1, \operatorname{Max} Z=11$
(2) $x_{1}=1, x_{2}=3, \operatorname{Max} Z=10$
(3) $x_{1}=2, x_{2}=1, \operatorname{Max} Z=11$
(4) $x_{1}=1, x_{2}=2, \operatorname{Max} Z=10$
30. The probability of living of a person in the age group ' x ' to ' $(x+n$)' can be obtained by the formula :
(1) l_{x+n} / l_{x}
(2) $\left(l_{x}-l_{x+n}\right) / l_{x+n}$
(3) $\left(l_{x}-l_{x+n}\right) / l_{x}$
(4) l_{x} / l_{x+n}
31. The mean of Binomial distribution $B(n, p)$ is :
(1) $n p$
(2) $n p-1$
(3) $n p-2$
(4) $n p-3$
32. Given that $E[X+4]=10$ and $E[X+4]^{2}=116$, then $\operatorname{Var}[X]$ is equal to :
(1) 4
(2) 8
(3) 12
(4) 16
33. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of ' a ' is given by :
(1) 0.4
(2) 0.5
(3) 0.3
(4) 0.1
34. Let ' X ' be a continuous random variable with Probability Density Function

$$
f(x)=\left\{\begin{array}{cc}
a x, & 0 \leq x \leq 1 \\
a, & 1 \leq x \leq 2 \\
-a x+3 a, & 2 \leq x \leq 3 \\
0, & x>3
\end{array}\right.
$$

Then the value of $P(X \leq 1.5)$ is given by :
(1) 0.5
(2) 0.81
(3) 0.19
(4) 0.17
35. The moment generating function of Poisson Distribution is :
(1) $e^{\lambda}\left(e^{t}-1\right)$
(2) $e^{t}\left(e^{\lambda}-1\right)$
(3) $e^{t}-1$
(4) $e^{\lambda}\left(1-e^{t}\right)$
36. Which of the following is the median of the exponential distribution with parameter λ ?
(1) λ
(2) $-\lambda^{-1}$
(3) λ^{-1}
(4) λ^{-2}
37. The Quartile Deviation of the normal distribution is :
(1) Q. D. $=\frac{2}{4} \sigma$
(2) Q. D. $=\frac{2}{3} \sigma$
(3) Q. D. $=\frac{2}{5} \sigma$
(4) Q. D. $=\frac{3}{4} \sigma$
38. If A and B are two independent events, then $P(\bar{A} \cap \bar{B})$ is equal to :
(1) $P(\bar{A}) P(\bar{B})$
(2) $1-P(A \cup B)$
(3) $[1-P(A)][1-P(B)]$
(4) All of the above
39. If event A and event B has occurred and it is known that $P(B)=1$, the conditional probability $P(A / B)$ is equal to :
(1) $P(A)$
(2) $P(B)$
(3) One
(4) Zero
40. The recurrence formula for geometric distribution is given by :
(1) $p(x+i)=q p(x+i)$
(2) $p(x)=q p(x+i)$
(3) $p(x+i)=q p(x)$
(4) $p(x)=p(x+i)$
41. Service time in queueing theory is usually assumed to follow :
(1) Poisson Distribution
(2) Erlang Distribution
(3) Exponential Distribution
(4) Normal Distribution
42. For MIM11 queueing system, the expected number of customers in systems are :
(1) $L_{S}=\left(\frac{\lambda}{\mu-\lambda}\right)$
(2) $L_{S}=\left(\frac{\lambda-\mu}{\lambda}\right)$
(3) $L_{S}=\left(\frac{\mu}{\mu-\lambda}\right)$
(4) $L_{S}=\left(\frac{\mu-\lambda}{\lambda}\right)$
43. Which of the following relationships is not true ?
(1) $W_{S}=W_{q}+\frac{1}{\mu}$
(2) $L_{S}=\lambda W_{S}$
(3) $L_{S}=L_{q}+\frac{1}{\lambda}$
(4) $L_{q}=\lambda W_{q}$
44. Maximize $Z=10 x_{1}+25 x_{2}$, subject to $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 3, x_{1}+x_{2} \leq 5$
(1) 80 at $(3,2)$
(2) 75 at $(0,3)$
(3) 30 at $(3,0)$
(4) 95 at $(2,3)$
45. Which variable is added for the less than or equal to type of constraint ?
(1) Slack
(2) Surplus
(3) Artificial
(4) Basic
46. The convex combination of two points $\bar{x}_{1}, \bar{x}_{2} \in X$ is referred as:
(1) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(2) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
(3) $\bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(4) $\lambda \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
47. The assignment problem is :
(1) non-linear programming problem
(2) dynamic programming problem
(3) integer linear programming problem
(4) integer non-linear programming problem
48. The order of Convergence of Secant Method is :
(1) 2.4
(2) 2
(3) 1.62
(4) 1
49. If $f(0)=3, f(1)=5, f(3)=21$, then the unique polynomials of degree 2 or less using Newton divided difference interpolation will be :
(1) $2 x^{2}+2 x+1$
(2) $2 x^{2}-3 x+1$
(3) $2 x^{2}+3$
(4) $x^{2}+3 x-2$
50. The third difference of a cubic $\Delta^{3} y$ function are :
(1) Constant
(2) Not constant
(3) Variables
(4) None of the above
51. Let ' f ' be a non-constant entire function. Which of the following properties is possible for ' f ' for each $z \in \mathbb{C}$?
(1) $\operatorname{Re} f(z)=\operatorname{Im} f(z)$
(2) $|f(z)|<1$
(3) $\operatorname{Im}(\mathrm{z})<0$
(4) $f(z) \neq 0$
52. Let ' f ' and ' g ' be mesomorphic function on (\mathbb{C}. If ' f ' has a zero of order ' k ' at $z=a$ and z has a pole of order ' m ' at $z=0$, then $g(f(z))$ has :
(1) a zero of order km at $z=a$
(2) a pole of order km at $z=a$
(3) a zero of order $\mathrm{lk}-\mathrm{ml}$ at $z=a$
(4) a pole of order $\mid \mathrm{k}-\mathrm{ml}$ at $z=a$
53. The set of vectors $X_{1}=(2,1,4), X_{2}=(-3,2,-1), X_{3}=(1,-3,-2)$ is :
(1) Linearly dependent
(2) Linearly independent
(3) Both of them
(4) None of these
54. Let a be 2×2 with $\operatorname{Det}(\mathrm{A})=1 \& \operatorname{Trace}(\mathrm{~A})=3$, then $\operatorname{Trace}\left(A^{2}\right)$ is :
(1) 7
(2) 8
(3) 9
(4) 10
55. If A is (2×2) matrix over $I R$ with $\operatorname{Det}(A+I)=1+\operatorname{Det}(A)$, then we can conclude that :
(1) $\operatorname{Det}(A)=0$
(2) $A=0$
(3) $\operatorname{Tr}(A)=0$
(4) A is non-singular
56. If A is a square matrix, then $A+A^{\prime}, A A^{\prime}$ and $A^{\prime} A$ are :
(1) Symmetric
(2) Skew Symmetric
(3) Hermitian
(4) Skew Hermitian
57. If $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ provided limit on RHS exists. This result is known as :
(1) Cauchy 1st Theorem on Limits
(2) Cauchy 2nd Theorem on Limits
(3) Squeeze Principle
(4) Leibnitz' Rule
58. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is :
(1) 1
(2) 0
(3) e
(4) 2
59. Consider the sequence $a_{n}=\left(1+(-1)^{n} \frac{1}{n}\right)^{n}$ then :
(1) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=1$
(2) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=e$
(3) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
(4) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=e, \lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
60. If X and Y are standard normal variates with correlation coefficient ' ρ ' between them, then the correlation coefficient between X^{2} and Y^{2} is :
(1) $2 \rho-1$
(2) ρ^{2}
(3) ρ
(4) \sqrt{p}
61. The pgf of a certain distribution is given as :
$P(s)=3 s^{2}-2 s+6$
What is the mean of this distribution?
(1) 2
(2) 3
(3) 4
(4) 5

PHD-EE-2023-24/(Statistics)(SET-Y)/(B)
62. The relation between student's -t and F-distribution is :
(1) $F_{1,1}=t_{n}^{2}$
(2) $F_{n, 1}=t_{1}^{2}$
(3) $F_{1, n}=t_{\infty}^{2}$
(4) $F_{1, n}=t_{n}^{2}$
63. The minimum variance unbiased estimator of θ^{2} based on a sample of size ' n ' from $N\left(\theta_{1}\right)$ is :
(1) $\bar{X}^{2}-1 / n$
(2) $\bar{X}^{2}+1 / n$
(3) $\sum\left(X_{i}-\bar{X}^{2}\right) / n$
(4) $\sum\left(X_{i}-\bar{X}^{2}\right) /(n-1)$
64. The Bayes estimator of a parameter under squared error loss function is :
(1) Posterior mean
(2) Posterior median
(3) Posterior mode
(4) Posterior variance
65. The decision criteria in SPRT depends on the function of :
(1) Type I error
(2) Type II error
(3) Both type I and type II error
(4) Neither Type I nor Type II error
66. What is an unbiased estimator of θ for the distribution $f(x, \theta)=\theta e^{-\theta} x, x \geq 0$?
(1) $\frac{(n-1) \bar{X}}{n}$
(2) $\frac{(n-1)}{n \bar{X}}$
(3) $\frac{\bar{X}}{n-1}$
(4) $\frac{1}{(n-1) \bar{X}}$
67. Given a random sample :

$$
f(x, \theta)=\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha
$$

What is the MLE of α ?
(1) X
(2) $2 X$
(3) $\frac{X^{2}}{2}$
(4) $\frac{X}{2}$
68. For a particular hypothesis test, the probabilities of type I and type II errors are respectively, 0.05 and 0.09 . The power of the test is :
(1) 0.95
(2) 0.14
(3) 0.86
(4) 0.91
69. A random sample of 100 articles are taken from a batch of 2000 articles shows that the average diameter of the articles is 0.354 and a standard deviation 0.048 . What is the 95% confidence interval for the average diameter of the batch ?
(1) $(0.2934,0.4235)$
(2) $(0.3448,0.3632)$
(3) $(0.3021,0.3824)$
(4) $(0.3923,0.4212)$
70. Which of the following is true ?
(1) Unbiased estimator is always efficient.
(2) Consistent estimator is always unbiased.
(3) Unbiased estimator is always consistent.
(4) MLE is always a function of sufficient statistic.
71. The correct relationship between A.M, G.M., and H.M. is :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M
72. Average wages of workers of factory are Rs. 550 per month and the standard deviation of wages is 110 . The coefficients of variation is :
(1) 30%
(2) 15%
(3) 500%
(4) 20%
73. If the mode of a frequency distribution is 16 and its mean is 16 , then the median of the
distribution is :
(1) 0
(2) 16
(3) 32
(4) 8
74. If Quartile deviation of a set of observations is given as 6.4 and the value of first quartile is 5 . What is the value of the third quartile?
(1) 12
(2) 15.3
(3) 17.8
(4) 20.2
75. For a leptokurtic frequency curve, the measures of kurtosis is :
(1) 0
(2) -3
(3) less than 1
(4) greater than 3
76. Standard error of the sample correlation coefficient ' r ' is based on ' n ' paired values is :
(1) $\frac{1+r^{2}}{\sqrt{n}}$
(2) $\frac{1+r^{2}}{n}$
(3) $\frac{1-r^{2}}{\sqrt{n}}$
(4) $\frac{1+r^{2}}{\sqrt{n-1}}$

PHD-EE-2023-24/(Statisties)(SET-Y)/(B)

77. Given the following set of equations :

$$
\begin{gathered}
x_{1}+4 x_{2}-x_{3}=3 \\
5 x_{1}+2 x_{2}+3 x_{3}=4
\end{gathered}
$$

The basic feasible solution involving x_{1} and x_{2} is :
(1) $\left(\frac{5}{9}, \frac{11}{18}, 0\right)$
(2) $\left(\frac{5}{9}, 0,0\right)$
(3) $\left(0, \frac{11}{18}, 0\right)$
(4) $\left(\frac{2}{9}, 0, \frac{3}{14}\right)$
78. The range of a partial correlation coefficient is :
(1) 0 to ∞
(2) $-\infty$ to ∞
(3) 0 to 1
(4) -1 to 1
79. The term regression was introduced by :
(1) Sir Francis Galton
(2) R.A. Fisher
(3) Karl Pearson
(4) P.C. Mahalanobis
80. If Regression Equations are :

$$
\begin{gathered}
6 y=5 x+90 \\
15 x=8 y+30
\end{gathered}
$$

And the variance of $x=4$, then the correlation coefficient between ' x ' and ' y ' is :
(1) 0.45
(2) 0.67
(3) 0.78
(4) 0.88
81. Let Y_{1}, Y_{2}, Y_{3} be uncorrelated observations with common variance σ^{2} and expectations given by $\left(Y_{1}\right)=\beta_{1}, E\left(Y_{2}\right)=\beta_{2}$ and $E\left(Y_{3}\right)=\beta_{1}+\beta_{2}$ where β_{1} and β_{2} are unknown parameters. The best linear unbiased estimator of $\beta_{1}+\beta_{2}$ is :
(1) $\frac{1}{2}\left(Y_{1}+Y_{2}+Y_{3}\right)$
(2) $Y_{1}+Y_{2}$
(3) $\frac{1}{2}\left(Y_{1}+Y_{2}+2 Y_{3}\right)$
(4) $\frac{1}{2}\left(Y_{1}-Y_{2}-Y_{3}\right)$
82. Under the regulatory conditions, if λ_{n} is the likelihood ratio, then the asymptotic distribution of $-2 \log \lambda_{n}$ as $n \rightarrow \infty$ is :
(1) Normal distribution
(2) Chi square distribution
(3) F-distribution
(4) T distribution
83. If the pdf of a random variable ' X ' is $f(x, \theta)=1-\theta^{2}, 0 \leq x \leq \frac{1}{1-\theta^{2}}$ and if we reject $H_{0}: \theta=\frac{1}{2}$ against the alternative $H_{1}: \theta=\frac{3}{4}$ whenever $x \geq 1$, then what is the power of the test?
(1) $\frac{15}{16}$
(2) $\frac{1}{2}$
(3) $\frac{7}{16}$
(4) $\frac{9}{16}$
84. If $X_{1}, X_{2}, \ldots \ldots X_{n}$ is a random sample form poisson distribution with parameter ' λ ', then the maximum likelihood estimator of $\log \lambda$ is given by :
(1) $e^{\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)}$
(2) $\log \left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)$
(3) $e^{\left(\sum_{i=1}^{n} x_{i}\right)}$
(4) $\log \left(\sum_{i=1}^{n} X_{i}\right)$
85. Which of the following could be used as a test for autocorrelation up to third order ?
(1) Spearmen Correlation test
(2) The Breusch-Goldfrey test
(3) The Durbin Watson test
(4) The Gold-Fled Quandt test
86. The following equation represent a simultaneous equation model :

$$
\begin{aligned}
& K_{1}=\alpha_{1} K_{2}+\beta_{1} Z_{1}+u_{1} \\
& K_{2}=\alpha_{2} K_{1}+\beta_{2} Z_{2}+u_{2}
\end{aligned}
$$

OLS will suffer from simultaneous bias if :
(1) u_{1} is correlated with Z_{1}
(2) Z_{1} is correlated with Z_{2}
(3) K_{2} is correlated with u_{1}
(4) K_{1} is correlated with u_{1}
87. Having known the last census population ' P_{0} ' and growth rate ' r ', the population after ' n ' years based on compound interest formula will be :
(1) $\hat{P}_{t}=P_{0}(1+r)^{n}$
(2) $\hat{P}_{t}=P_{0}(1+n)^{r}$
(3) $\hat{P}_{t}=P_{0} /(1+r)^{n}$
(4) $\hat{P}_{t}=P_{0} /(1+n)^{r}$
88. Vital rates are customarily expressed as :
(1) Percentages
(2) Per Thousand
(3) Per Million
(4) Per Trillion
89. Age - Specific mortality rates fail to reveal :
(1) Mortality conditions
(2) Age-distribution of persons
(3) Sex Ratio
(4) All of the above
90. The relationship between NRR and GRR is :
(1) NRR and GRR are usually equal
(2) NRR can never exceed GRR
(3) NRR is generally greater than GRR
(4) None of the above
91. In SRSWOR, if $\bar{y}=50, n=100, N=500$, then the estimated population total is :
(1) 250
(2) 500
(3) 25000
(4) 2500
92. Headquarters of Field Operations Division of NSSO are located at :
(1) New Delhi
(2) Kolkata
(3) Bombay
(4) Chennai
93. The variance of stratified sampling mean $\bar{Y}_{s t}$ is :
(1) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) W_{h}^{2} S_{h}^{2}$
(2) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
(3) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) S_{h}^{2}$
(4) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
94. In simple random sampling, the biased of ratio estimator is unbiased if :
(1) They are independent
(2) They are uncorrelated
(3) They are correlated
(4) They are dependent
95. Wishart distribution $\left(\sigma^{2}, n\right)$ follows :
(1) $\sigma^{2} \chi^{2}$ distribution
(2) $N\left(0, \sigma^{2}\right)$ distribution
(3) $\frac{e^{-n} \sigma^{2}}{n}$ distribution
(4) Beta distribution
96. Hotelling T^{2} can be approximated to statistic ' F ' with usual notation as test criteria following the inequality for rejection as :
(1) $T^{2}>F_{p, n-p ; \alpha} f$ or $n>p$
(2) $T^{2}<F_{p, n-p ; \alpha} f$ or $n>p$
(3) $T^{2}>\frac{n-1}{n-p} F_{p, n-p ; \alpha} f$ or $n>p$
(4) $T^{2}>\frac{n-p}{n-1} F_{p, n-p ; \alpha} f$ or $n>p$
97. A measure of association between a discriminant function and a set of dummy variables that define the group membership is known as :
(1) Multivariate Correlation
(2) Multicollinearity
(3) Canonical Correlation
(4) Biserial Correlation
98. The ratio of number of replications required in CRD and RBD for the same amount of
information is :
(1) $3: 2$
(2) $5: 3$
(3) $5: 4$
(4) $3: 5$
99. In a Randomised Block Design, we always have :
(1) Number of blocks = Number of treatments
(2) Number of blocks $>$ Number of treatments
(3) Number of blocks < Number of treatments
(4) All of the above
100. The additional effect gained due to combined effect of two or more factors is known as :
(1) Main Effect
(2) Interaction Effect
(3) Either (1) or (2)
(4) Neither (1) or (2)

Time : $1 \frac{1}{4}$ Hours
Roll No. (in figures) \qquad
Max. Marks : 100 (in words)

Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means-/ mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PHD-EE-2023-24/(Statistics)(SET-Y)/(C)
9. The pgf of a certain distribution is given as :
$P(s)=3 s^{2}-2 s+6$
What is the mean of this distribution ?
(1) 2
(2) 3
(3) 4
(4) 5
10. The relation between student's $-t$ and F-distribution is :
(1) $F_{1,1}=t_{n}^{2}$
(2) $F_{n, 1}=t_{1}^{2}$
(3) $F_{1, n}=t_{\infty}^{2}$
(4) $F_{1, n}=t_{n}^{2}$
11. The minimum variance unbiased estimator of θ^{2} based on a sample of size ' n ' from $N\left(\theta_{1}\right)$ is :
(1) $\bar{X}^{2}-1 / n$
(2) $\bar{X}^{2}+1 / n$
(3) $\sum\left(X_{i}-\bar{X}^{2}\right) / n$
(4) $\sum\left(X_{i}-\bar{X}^{2}\right) /(n-1)$
12. The Bayes estimator of a parameter under squared error loss function is :
(1) Posterior mean
(2) Posterior median
(3) Posterior mode
(4) Posterior variance
13. The decision criteria in SPRT depends on the function of :
(1) Type I error
(2) Type II error
(3) Both type I and type II error
(4) Neither Type I nor Type II error
14. What is an unbiased estimator of θ for the distribution $f(x, \theta)=\theta e^{-\theta} x, x \geq 0$?
(1) $\frac{(n-1) \bar{X}}{n}$
(2) $\frac{(n-1)}{n \bar{X}}$
(3) $\frac{\bar{X}}{n-1}$
(4) $\frac{1}{(n-1) \bar{X}}$
15. Given a random sample :
$f(x, \theta)=\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha$
What is the MLE of α ?
(1) X
(2) $2 X$
(3) $\frac{X^{2}}{2}$
(4) $\frac{X}{2}$
16. For a particular hypothesis test, the probabilities of type I and type II errors are respectively, 0.05 and 0.09 . The power of the test is :
(1) 0.95
(2) 0.14
(3) 0.86
(4) 0.91
17. A random sample of 100 articles are taken from a batch of 2000 articles shows that the average diameter of the articles is 0.354 and a standard deviation 0.048 . What is the 95% confidence interval for the average diameter of the batch ?
(1) $(0.2934,0.4235)$
(2) $(0.3448,0.3632)$
(3) $(0.3021,0.3824)$
(4) $(0.3923,0.4212)$
18. Which of the following is true ?
(1) Unbiased estimator is always efficient.
(2) Consistent estimator is always unbiased.
(3) Unbiased estimator is always consistent.
(4) MLE is always a function of sufficient statistic.
19. Service time in queueing theory is usually assumed to follow :
(1) Poisson Distribution
(2) Erlang Distribution
(3) Exponential Distribution
(4) Normal Distribution
20. For MIMI1 queueing system, the expected number of customers in systems are :
(1) $L_{S}=\left(\frac{\lambda}{\mu-\lambda}\right)$
(2) $L_{S}=\left(\frac{\lambda-\mu}{\lambda}\right)$
(3) $L_{S}=\left(\frac{\mu}{\mu-\lambda}\right)$
(4) $L_{S}=\left(\frac{\mu-\lambda}{\lambda}\right)$
21. Which of the following relationships is not true ?
(1) $W_{S}=W_{q}+\frac{1}{\mu}$
(2) $L_{S}=\lambda W_{S}$
(3) $L_{S}=L_{q}+\frac{1}{\lambda}$
(4) $L_{q}=\lambda W_{q}$
22. Maximize $Z=10 x_{1}+25 x_{2}$, subject to $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 3, x_{1}+x_{2} \leq 5$
(1) 80 at $(3,2)$
(2) 75 at $(0,3)$
(3) 30 at $(3,0)$
(4) 95 at $(2,3)$

PHD-EE-2023-24/(Statistics)(SET-Y)/(C)

C
15. Which variable is added for the less than or equal to type of constraint ?
(1) Slack
(2) Surplus
(3) Artificial
(4) Basic
16. The convex combination of two points $\bar{x}_{1}, \bar{x}_{2} \in X$ is referred as :
(1) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(2) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
(3) $\bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(4) $\lambda \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
17. The assignment problem is :
(1) non-linear programming problem
(2) dynamic programming problem
(3) integer linear programming problem
(4) integer non-linear programming problem
18. The order of Convergence of Secant Method is :
(1) 2.4
(2) 2
(3) 1.62
(4) 1
19. If $f(0)=3, f(1)=5, f(3)=21$, then the unique polynomials of degree 2 or less using Newton divided difference interpolation will be :
(1) $2 x^{2}+2 x+1$
(2) $2 x^{2}-3 x+1$
(3) $2 x^{2}+3$
(4) $x^{2}+3 x-2$
20. The third difference of a cubic $\Delta^{3} y$ function are :
(1) Constant
(2) Not constant
(3) Variables
(4) None of the above
21. Let Y_{1}, Y_{2}, Y_{3} be uncorrelated observations with common variance σ^{2} and expectations given by $\left(Y_{1}\right)=\beta_{1}, E\left(Y_{2}\right)=\beta_{2}$ and $E\left(Y_{3}\right)=\beta_{1}+\beta_{2}$ where β_{1} and β_{2} are unknown parameters. The best linear unbiased estimator of $\beta_{1}+\beta_{2}$ is :
(1) $\frac{1}{2}\left(Y_{1}+Y_{2}+Y_{3}\right)$
(2) $Y_{1}+Y_{2}$
(3) $\frac{1}{2}\left(Y_{1}+Y_{2}+2 Y_{3}\right)$
(4) $\frac{1}{2}\left(Y_{1}-Y_{2}-Y_{3}\right)$
22. Under the regulatory conditions, if λ_{n} is the likelihood ratio, then the asymptotic distribution of $-2 \log \lambda_{n}$ as $n \rightarrow \infty$ is :
(1) Normal distribution
(2) Chi square distribution
(3) F-distribution
(4) T distribution
23. If the pdf of a random variable ' X ' is $f(x, \theta)=1-\theta^{2}, 0 \leq x \leq \frac{1}{1-\theta^{2}}$ and if we reject $H_{0}: \theta=\frac{1}{2}$ against the alternative $H_{1}: \theta=\frac{3}{4}$ whenever $x \geq 1$, then what is the power of the test?
(1) $\frac{15}{16}$
(2) $\frac{1}{2}$
(3) $\frac{7}{16}$
(4) $\frac{9}{16}$
24. If $X_{1}, X_{2}, \ldots \ldots X_{n}$ is a random sample form poisson distribution with parameter ' λ ', then the maximum likelihood estimator of $\log \lambda$ is given by :
(1) $e^{\left(\sum_{i=1}^{n} \frac{x_{i}}{n}\right)}$
(2) $\log \left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)$
(3) $e^{\left(\sum_{i=1}^{n} x_{i}\right)}$
(4) $\log \left(\sum_{i=1}^{n} X_{i}\right)$
25. Which of the following could be used as a test for autocorrelation up to third order ?
(1) Spearmen Correlation test
(2) The Breusch-Goldfrey test
(3) The Durbin Watson test
(4) The Gold-Fled Quandt test
26. The following equation represent a simultaneous equation model :

$$
\begin{aligned}
& K_{1}=\alpha_{1} K_{2}+\beta_{1} Z_{1}+u_{1} \\
& K_{2}=\alpha_{2} K_{1}+\beta_{2} Z_{2}+u_{2}
\end{aligned}
$$

OLS will suffer from simultaneous bias if :
(1) u_{1} is correlated with Z_{1}
(2) Z_{1} is correlated with Z_{2}
(3) K_{2} is correlated with u_{1}
(4) K_{1} is correlated with u_{1}

C
27. Having known the last census population ' P_{0} ' and growth rate ' r ', the population after ' n ' years based on compound interest formula will be :
(1) $\hat{P}_{t}=P_{0}(1+r)^{n}$
(2) $\hat{P}_{t}=P_{0}(1+n)^{r}$
(3) $\hat{P}_{t}=P_{0} /(1+r)^{n}$
(4) $\hat{P}_{t}=P_{0} /(1+n)^{r}$
28. Vital rates are customarily expressed as :
(1) Percentages
(2) Per Thousand
(3) Per Million
(4) Per Trillion
29. Age - Specific mortality rates fail to reveal :
(1) Mortality conditions
(2) Age-distribution of persons
(3) Sex Ratio
(4) All of the above
30. The relationship between NRR and GRR is :
(1) NRR and GRR are usually equal
(2) NRR can never exceed GRR
(3) NRR is generally greater than GRR
(4) None of the above
31. If the random variables X, Y and Z have the means $\mu_{x}=5, \mu_{y}=7$ and $\mu_{z}=4$; $\sigma_{X}^{2}=10, \sigma_{Y}^{2}=14$ and $\sigma_{Z}^{2}=20 ; \operatorname{Cov}(X, Y)=1, \operatorname{Cov}(X, Z)=3$ and $\operatorname{Cov}(Y, Z)=2$, then what is the covariance of $U=X+4 Y+2 Z$ and $V=3 X-Y-Z$?
(1) -76
(2) 82
(3) -82
(4) 76
32. Neelam has appeared in an examination which follows multiple choice questions, each having five possible answers. The probability that she knows an answer is 0.75 . If she does not know an answer, she will guess, with the conditional probability $1 / 5$ of being correct. The conditional probability that Neelam knows the answer, given that she gives the correct answer is :
(1) 0.25
(2) 0.80
(3) 0.90
(4) 0.94
33. A drunkard takes a forward step with probability ' p ' and a backward step with probability ' q '. After taking 11 steps, the probability that he is the one step away from the starting point is :
(1) $p^{6}+q^{6}$
(2) $2\left(p^{6}+q^{5}\right)$
(3) $462 p^{6} q^{5}$
(4) $462 p^{5} q^{5}$
34. For the sequence $\left\{X_{n}\right\}$ of independent random variables the following are defined :

$$
P\left(X_{k}= \pm 2^{k}\right)=2^{-(2 k+1)} ; P\left(X_{k}=0\right)=1-2^{-2 k}
$$

Which of the following are not correct(s) ?
(a) WLLN holds because $E\left(X_{k}\right)=0$ and $\lim _{n \rightarrow \infty} \frac{B_{n}}{n^{2}} \rightarrow 0$ where $B_{n}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$
(b) Weak law of large numbers holds by Khinchin's theorem because $E\left(X_{k}\right)$ is finite.
(c) WLLN holds since X_{k} are identically distributed.

Select the correct answer using code given below :
(1) (b) and (c) only
(2) (a) and (b) only
(3) (a) and (c) only
(4) (a), (b) and (c) only
35. If $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and σ_{X-Y}^{2} are the variances of X, Y and $X-Y$ respectively, then what is the coefficient of correlation between ' X ' and ' Y ' ?
(1) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X-Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(2) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(3) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X+Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(4) $\frac{\sigma_{X}^{2}-\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
36. Let ' X ' and ' Y ' be independent Gamma $G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$ random variables respectively. Then $\frac{X}{X+Y}$ is distributed as :
(1) $G\left(\alpha_{1}+\alpha_{2}, \beta\right)$
(2) $\beta_{1}\left(\alpha_{1}, \alpha_{2}\right)$
(3) $U(0,1)$
(4) $G\left(\alpha_{1}, \alpha_{2}\right)$

C

37. The Joint Density Function of ' X ' and ' Y ' is given by :

$$
f(x, y)=\left\{\begin{array}{cc}
2 e^{-x} e^{-2 y} & 0<x<\infty, 0<y<\infty \\
0 & \text { otherwise }
\end{array}\right\}
$$

What is the value of $\mathrm{P}(\mathrm{X}<\mathrm{Y})$?
(1) $1 / 3$
(2) $1 / 2$
(3) $1 / 4$
(4) $1 / 6$
38. For a certain frequency distribution, the numerical computation yields the following : Mean $=62$, Median $=65$, Coefficient of skewness $=-0.3$, then the standard deviation is equal to :
(1) 10
(2) 30
(3) 90
(4) 300
39. Let ' X ' be a random variable having Probability Density Function :
$f(x)=\left\{\begin{array}{cc}x / 2 & 0<x<1 \\ 1 / 2 & 1<x \leq 2 \\ (3-x) / 3 & 2<x \leq 3\end{array}\right\}$
Then $\mathrm{P}(1.5<\mathrm{X}<2.5 \mathrm{IX}>1)$ equals to :
(1) $3 / 8$
(2) $5 / 8$
(3) $1 / 2$
(4) $1 / 4$
40. Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be i.i.d. random variables with $E\left(X_{i}\right)=\mu$ and $\mathrm{E}\left(X_{i}^{2}\right)<\infty$, then the consistent estimator for μ is :
(1) $\frac{2 i^{2}}{n(n+1) \sum X_{i}}$
(2) $\frac{2}{n(n+1)} \sum i X_{i}$
(3) $\frac{2 i}{n(n+1)} \sum X_{i}$
(4) $\frac{2}{n(n+1)} \sum i^{2} X_{i}$
41. The correct relationship between A.M, G.M., and H.M. is :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M
42. Average wages of workers of factory are Rs. 550 per month and the standard deviation of wages is 110 . The coefficients of variation is :
(1) 30%
(2) 15%
(3) 500%
(4) 20%
43. If the mode of a frequency distribution is 16 and its mean is 16 , then the median of the distribution is :
(1) 0
(2) 16
(3) 32
(4) 8
44. If Quartile deviation of a set of observations is given as 6.4 and the value of first quartile is 5 . What is the value of the third quartile?
(1) 12
(2) 15.3
(3) 17.8
(4) 20.2
45. For a leptokurtic frequency curve, the measures of kurtosis is :
(1) 0
(2) -3
(3) less than 1
(4) greater than 3
46. Standard error of the sample correlation coefficient ' r ' is based on ' n ' paired values is :
(1) $\frac{1+r^{2}}{\sqrt{n}}$
(2) $\frac{1+r^{2}}{n}$
(3) $\frac{1-r^{2}}{\sqrt{n}}$
(4) $\frac{1+r^{2}}{\sqrt{n-1}}$
47. Given the following set of equations :

$$
\begin{gathered}
x_{1}+4 x_{2}-x_{3}=3 \\
5 x_{1}+2 x_{2}+3 x_{3}=4
\end{gathered}
$$

The basic feasible solution involving x_{1} and x_{2} is :
(1) $\left(\frac{5}{9}, \frac{11}{18}, 0\right)$
(2) $\left(\frac{5}{9}, 0,0\right)$
(3) $\left(0, \frac{11}{18}, 0\right)$
(4) $\left(\frac{2}{9}, 0, \frac{3}{14}\right)$
48. The range of a partial correlation coefficient is :
(1) 0 to ∞
(2) $-\infty$ to ∞
(3) 0 to 1
(4) -1 to 1
49. The term regression was introduced by :
(1) Sir Francis Galton
(2) R.A. Fisher
(3) Karl Pearson
(4) P.C. Mahalanobis

C
50. If Regression Equations are :

$$
\begin{gathered}
6 y=5 x+90 \\
15 x=8 y+30
\end{gathered}
$$

And the variance of $x=4$, then the correlation coefficient between ' x ' and ' y ' is :
(1) 0.45
(2) 0.67
(3) 0.78
(4) 0.88
51. In SRSWOR, if $\bar{y}=50, n=100, N=500$, then the estimated population total is :
(1) 250
(2) 500
(3) 25000
(4) 2500
52. Headquarters of Field Operations Division of NSSO are located at :
(1) New Delhi
(2) Kolkata
(3) Bombay
(4) Chennai
53. The variance of stratified sampling mean $\bar{Y}_{s t}$ is :
(1) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) W_{h}^{2} S_{h}^{2}$
(2) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
(3) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) S_{h}^{2}$
(4) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
54. In simple random sampling, the biased of ratio estimator is unbiased if :
(1) They are independent
(2) They are uncorrelated
(3) They are correlated
(4) They are dependent
55. Wishart distribution $\left(\sigma^{2}, n\right)$ follows :
(1) $\sigma^{2} \chi^{2}$ distribution
(2) $N\left(0, \sigma^{2}\right)$ distribution
(3) $\frac{e^{-n} \sigma^{2}}{n}$ distribution
(4) Beta distribution
56. Hotelling T^{2} can be approximated to statistic ' F ' with usual notation as test criteria following the inequality for rejection as :
(1) $T^{2}>F_{p, n-p ; \alpha} f$ or $n>p$
(2) $T^{2}<F_{p, n-p ; \alpha} f$ or $n>p$
(3) $T^{2}>\frac{n-1}{n-p} F_{p, n-p ; \alpha} f$ or $n>p$
(4) $T^{2}>\frac{n-p}{n-1} F_{p, n-p ; \alpha} f$ or $n>p$
57. A measure of association between a discriminant function and a set of dummy variables that define the group membership is known as :
(1) Multivariate Correlation
(2) Multicollinearity
(3) Canonical Correlation
(4) Biserial Correlation
58. The ratio of number of replications required in CRD and RBD for the same amount of information is :
(1) $3: 2$
(2) $5: 3$
(3) $5: 4$
(4) $3: 5$
59. In a Randomised Block Design, we always have :
(1) Number of blocks $=$ Number of treatments
(2) Number of blocks̃ $>$ Number of treatments
(3) Number of blocks < Number of treatments
(4) All of the above
60. The additional effect gained due to combined effect of two or more factors is known as :
(1) Main Effect
(2) Interaction Effect
(3) Either (1) or (2)
(4) Neither (1) or (2)
61. The mean of Binomial distribution $B(n, p)$ is :
(1) $n p$
(2) $n p-1$
(3) $n p-2$
(4) $n p-3$
62. Given that $E[X+4]=10$ and $E[X+4]^{2}=116$, then $\operatorname{Var}[X]$ is equal to :
(1) 4
(2) 8
(3) 12
(4) 16
63. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of ' a ' is given by :
(1) 0.4
(2) 0.5
(3) 0.3
(4) 0.1
64. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of $P(X \leq 1.5)$ is given by :
(1) 0.5
(2) 0.81
(3) 0.19
(4) 0.17
65. The moment generating function of Poisson Distribution is :
(1) $e^{\lambda}\left(e^{t}-1\right)$
(2) $e^{t}\left(e^{\lambda}-1\right)$
(3) $e^{t}-1$
(4) $e^{\lambda}\left(1-e^{t}\right)$
66. Which of the following is the median of the exponential distribution with parameter λ ?
(1) λ
(2) $-\lambda^{-1}$
(3) λ^{-1}
(4) λ^{-2}
67. The Quartile Deviation of the normal distribution is :
(1) Q. D. $=\frac{2}{4} \sigma$
(2) Q. D. $=\frac{2}{3} \sigma$
(3) Q.D. $=\frac{2}{5} \sigma$
(4) Q.D. $=\frac{3}{4} \sigma$
68. If A and B are two independent events, then $P(\bar{A} \cap \bar{B})$ is equal to :
(1) $P(\bar{A}) P(\bar{B})$
(2) $1-P(A \cup B)$
(3) $[1-P(A)][1-P(B)]$
(4) All of the above
69. If event A and event B has occurred and it is known that $P(B)=1$, the conditional probability $P(A / B)$ is equal to :
(1) $P(A)$
(2) $P(B)$
(3) One
(4) Zero
70. The recurrence formula for geometric distribution is given by :
(1) $p(x+i)=q p(x+i)$
(2) $p(x)=q p(x+i)$
(3) $p(x+i)=q p(x)$
(4) $p(x)=p(x+i)$
71. For a standard $n \times n$ Latin Square, how many different Latin squares can be obtained with the same standard?
(1) n ! $(n-2)$!
(2) $(n-1)$! $(n-2)$!
(3) n ! $(n-1)$!
(4) n ! $(n+1)$!
72. The condition for the time reversal test to hold good with usual notations is :
(1) $P_{01} \times P_{10}=1$
(2) $P_{10} \times P_{01}=0$
(3) $P_{01} / P_{10}=1$
(4) $P_{01}+P_{10}=1$
73. Weight in Laspeyre's price index number is known as \qquad .
(1) Quantity during the current year
(2) Quantity in the base year
(3) Price during the current year
(4) Price in the base year
74. In India, the collectioñ of vital statistics started for first time in :
(1) 1720
(2) 1886
(3) 1969
(4) 1946
75. Fisher's ideal formula does not satisfy
(1) Time Reversal Test
(2) Circular Test
(3) Factor Reversal Test
(4) Unit Test
76. If l_{x} is the number of persons living at the age ' x ' and ' L_{x} ' the number of persons living in the mid of ' x ' and ' $(x+1)$ ' years, then the relation between l_{x} and L_{x} is :
(1) $L_{x}=\frac{1}{2}\left(l_{x}+l_{x+1}\right)$
(2) $L_{x}=\left(\frac{x}{2}+l_{x}\right)$
(3) $L_{x}=l_{x+\frac{1}{2}}$
(4) $L_{x}=l={ }_{x+\frac{3}{2}}$
77. Fertility rates mainly depend on :
(1) Total female population
(2) Total population
(3) Female population of child bearing age
(4) Number of newly born babies
78. If the quantity demanded of a commodity is unresponsive to change in prices, then the demand of that commodity is :
(1) Perfectly Inelastic
(2) Elastic
(3) Unit Elastic
(4) Inelastic
79. The elasticity for the demand of the durable goods is :
(1) Zero
(2) Equal to unity
(3) Greater than unity
(4) Less than Unity
80. Consider the following matrix :

$$
P=\left[\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]
$$

If P is a stochastic matrix, then which of the following is not true?
(1) P is Ergodic
(2) P is Regular
(3) P is not Regular
(4) Both (1) and (3)
81. Construction of life tables is based on the assumption that :
(1) Age - specific death rates are constant at all ages.
(2) Death rates are uniformly distributed between two birth days.
(3) Mortality rates are same for male and female populations.
(4) All of the above
82. A life table consists of :
(1) Seven columns
(2) Eight columns
(3) Six columns
(4) Nine Columns
83. King's abridged life tables are based in the calculation of :
(1) Central mortality rate
(2) The number of persons and deaths for central age in the interval $\{x, x+n\}$
(3) Both (1) and (2)
(4) Neither (1) nor (2)
84. If Laspeyre's price index number is 324 and Paasche's Price Index number is 144 , then Fisher's Ideal Index Number is :
(1) 180
(2) 234
(3) 216
(4) 222
85. If a negative value appears in the solution values $\left(X_{B}\right)$ column of the simplex table, then :
(1) The solution is optimal
(2) The solution is infeasible
(3) The solution is unbounded
(4) All of the above
86. The maximum number of extreme points for a LPP
$\operatorname{Max} Z=c x$
Subject to

$$
A x=b ; x \geq 0
$$

- Where A is $m \times n$ matrix is equal to :
(1) $\frac{m!}{n!(m-n)!}$
(2) $\frac{n!}{m!(n-m)!}$
(3) $(m-n)$
(4) $m n$

87. In a basic feasible solution of an $m \times n$ transportation problem, the number of positive allocations is atmost :
(1) $m+n$
(2) $m+n-1$
(3) $m-n$
(4) $m+n-2$
88. The necessary and sufficient condition for the existence of a feasible solution of a transportation problem is :
(1) $\sum a_{i}=\sum b_{j}$
(2) $\sum a_{i} \neq \sum b_{j}$
(3) $\sum a_{i}=0$
(4) $\sum b_{j}=0$

C

89. Consider the linear programming problem :
$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Then its solution is :
(1) $x_{1}=3, x_{2}=1, \operatorname{Max} Z=11$
(2) $x_{1}=1, x_{2}=3, \operatorname{Max} Z=10$
(3) $x_{1}=2, x_{2}=1, \operatorname{Max} Z=11$
(4) $x_{1}=1, x_{2}=2$, Max $Z=10$
90. The probability of living of a person in the age group ' x ' to ' $(x+n)$ ' can be obtained by the formula :
(1) l_{x+n} / l_{x}
(2) $\left(l_{x}-l_{x+n}\right) / l_{x+n}$
(3) $\left(l_{x}-l_{x+n}\right) / l_{x}$
(4) l_{x} / l_{x+n}
91. Let ' f ' be a non-constant entire function. Which of the following properties is possible for ' f ' for each $z \in \mathbb{C}$?
(1) $\operatorname{Re} f(z)=\operatorname{Im} f(z)$
(2) $|f(z)|<1$
(3) $\operatorname{Im}(\mathrm{z})<0$
(4) $f(z) \neq 0$
92. Let ' f ' and ' g ' be mesomorphic function on (\mathbb{C}. If ' f ' has a zero of order ' k ' at $z=a$ and z has a pole of order ' m ' at $z=0$, then $g(f(z))$ has :
(1) a zero of order km at $z=a$
(2) a pole of order km at $z=a$
(3) a zero of order $\mathrm{lk}-\mathrm{ml}$ at $z=a$
(4) a pole of order $\mid \mathrm{k}-\mathrm{ml}$ at $z=a$
93. The set of vectors $X_{1}=(2,1,4), X_{2}=(-3,2,-1), X_{3}=(1,-3,-2)$ is :
(1) Linearly dependent
(2) Linearly independent
(3) Both of them
(4) None of these
94. Let a be 2×2 with $\operatorname{Det}(\mathrm{A})=1$ \& $\operatorname{Trace}(\mathrm{A})=3$, then $\operatorname{Trace}\left(A^{2}\right)$ is :
(1) 7
(2) 8
(3) 9
(4) 10
95. If A is (2×2) matrix over $I R$ with $\operatorname{Det}(A+I)=1+\operatorname{Det}(A)$, then we can conclude that :
(1) $\operatorname{Det}(A)=0$
(2) $\mathrm{A}=0$
(3) $\operatorname{Tr}(\mathrm{A})=0$
(4) A is non-singular
96. If A is a square matrix, then $A+A^{\prime}, A A^{\prime}$ and $A^{\prime} A$ are :
(1) Symmetric
(2) Skew Symmetric
(3) Hermitian
(4) Skew Hermitian
97. If $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ provided limit on RHS exists. This result is known as :
(1) Cauchy 1st Theorem on Limits
(2) Cauchy 2nd Theorem on Limits
(3) Squeeze Principle
(4) Leibnitz' Rule
98. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is :
(1) 1
(2) 0
(3) e
(4) 2
99. Consider the sequence $a_{n}=\left(1+(-1)^{n} \frac{1}{n}\right)^{n}$ then :
(1) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=1$
(2) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=e$
(3) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
(4) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=e, \lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
100. If X and Y are standard normal variates with correlation coefficient ' ρ ' between them, then the correlation coefficient between X^{2} and Y^{2} is:
(1) $2 \rho-1$
(2) ρ^{2}
(3) ρ
(4) $\sqrt{\rho}$
\qquad
Max. Marks : 100
Total Questions : 100

Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PHD-EE-2023-24/(Statistics)(SET-Y)/(D)

D

1. Construction of life tables is based on the assumption that :
(1) Age - specific death rates are constant at all ages.
(2) Death rates are uniformly distributed between two birth days.
(3) Mortality rates are same for male and female populations.
(4) All of the above
2. A life table consists of :
(1) Seven columns
(2) Eight columns
(3) Six columns
(4) Nine Columns
3. King's abridged life tables are based in the calculation of :
(1) Central mortality rate
(2) The number of persons and deaths for central age in the interval $\{x, x+n\}$
(3) Both (1) and (2)
(4) Neither (1) nor (2)
4. If Laspeyre's price index number is 324 and Paasche's Price Index number is 144 , then Fisher's Ideal Index Number is :
(1) 180
(2) 234
(3) 216
(4) 222
5. If a negative value appears in the solution values $\left(X_{B}\right)$ column of the simplex table, then :
(1) The solution is optimal
(2) The solution is infeasible
(3) The solution is unbounded
(4) All of the above
6. The maximum number of extreme points for a LPP
$\operatorname{Max} Z=c x$
Subject to

$$
A x=b ; x \geq 0
$$

Where A is $m \times n$ matrix is equal to :
(1) $\frac{m!}{n!(m-n)!}$
(2) $\frac{n!}{m!(n-m)!}$
(3) $(m-n)$
(4) $m n$
7. In a basic feasible solution of an $m \times n$ transportation problem, the number of positive allocations is atmost :
(1) $m+n$
(2) $m+n-1$
(3) $m-n$
(4) $m+n-2$
8. The necessary and sufficient condition for the existence of a feasible solution of a transportation problem is :
(1) $\sum a_{i}=\sum b_{j}$
(2) $\sum a_{i} \neq \sum b_{j}$
(3) $\sum a_{i}=0$
(4) $\sum b_{j}=0$
9. Consider the linear programming problem :
$\operatorname{Max} Z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Then its solution is :
(1) $x_{1}=3, x_{2}=1, \operatorname{Max} Z=11$
(2) $x_{1}=1, x_{2}=3, \operatorname{Max} Z=10$
(3) $x_{1}=2, x_{2}=1, \operatorname{Max} Z=11$
(4) $x_{1}=1, x_{2}=2, \operatorname{Max} Z=10$
10. The probability of living of a person in the age group ' x ' to ' $(x+n)$ ' can be obtained by the formula :
(1) l_{x+n} / l_{x}
(2) $\left(l_{x}-l_{x+n}\right) / l_{x+n}$
(3) $\left(l_{x}-l_{x+n}\right) / l_{x}$
(4) l_{x} / l_{x+n}

D

11. In SRSWOR, if $\bar{y}=50, n=100, N=500$, then the estimated population total is :
(1) 250
(2) 500
(3) 25000
(4) 2500
12. Headquarters of Field Operations Division of NSSO are located at :
(1) New Delhi
(2) Kolkata
(3) Bombay
(4) Chennai
13. The variance of stratified sampling mean $\bar{Y}_{s t}$ is:
(1) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) W_{h}^{2} S_{h}^{2}$
(2) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
(3) $\sum_{h=1}^{L}\left(\frac{1}{N_{h}}-\frac{1}{n_{h}}\right) S_{h}^{2}$
(4) $\sum_{h=1}^{L}\left(\frac{1}{n_{h}}-\frac{1}{N_{h}}\right) W_{h}^{2} S_{h}^{2}$
14. In simple random sampling, the biased of ratio estimator is unbiased if :
(1) They are independent
(2) They are uncorrelated
(3) They are correlated
(4) They are dependent
15. Wishart distribution $\left(\sigma^{2}, n\right)$ follows :
(1) $\sigma^{2} \chi^{2}$ distribution
(2) $N\left(0, \sigma^{2}\right)$ distribution
(3) $\frac{e^{-n} \sigma^{2}}{n}$ distribution
(4) Beta distribution
16. Hotelling T^{2} can be approximated to statistic ' F ' with usual notation as test criteria following the inequality for rejection as :
(1) $T^{2}>F_{p, n-p ; \alpha} f$ or $n>p$
(2) $T^{2}<F_{p, n-p ; \alpha} f$ or $n>p$
(3) $T^{2}>\frac{n-1}{n-p} F_{p, n-p ; \alpha} f$ or $n>p$
(4) $T^{2}>\frac{n-p}{n-1} F_{p, n-p ; \alpha} f$ or $n>p$
17. A measure of association between a discriminant function and a set of dummy variables that define the group membership is known as :
(1) Multivariate Correlation
(2) Multicollinearity
(3) Canonical Correlation
(4) Biserial Correlation
18. The ratio of number of replications required in CRD and RBD for the same amount of information is :
(1) $3: 2$
(2) $5: 3$
(3) $5: 4$
(4) $3: 5$
19. In a Randomised Block Design, we always have :
(1) Number of blocks $=$ Number of treatments
(2) Number of blocks $>$ Number of treatments
(3) Number of blocks < Number of treatments
(4) All of the above
20. The additional effect gained due to combined effect of two or more factors is known as :
(1) Main Effect
(2) Interaction Effect
(3) Either (1) or (2)
(4) Neither (1) or (2)
21. If the random variables X, Y and Z have the means $\mu_{x}=5, \mu_{y}=7$ and $\mu_{z}=4$; $\sigma_{X}^{2}=10, \sigma_{Y}^{2}=14$ and $\sigma_{Z}^{2}=20 ; \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=1, \operatorname{Cov}(\mathrm{X}, \mathrm{Z})=3$ and $\operatorname{Cov}(\mathrm{Y}, \mathrm{Z})=2$, then what is the covariance of $U=X+4 Y+2 Z$ and $V=3 X-Y-Z$?
(1) -76
(2) 82
(3) -82
(4) 76
22. Neelam has appeared in an examination which follows multiple choice questions, each having five possible answers. The probability that she knows an answer is 0.75 . If she does not know an answer, she will guess, with the conditional probability $1 / 5$ of being correct. The conditional probability that Neelam knows the answer, given that she gives the correct answer is :
(1) 0.25
(2) 0.80
(3) 0.90
(4) 0.94
23. A drunkard takes a forward step with probability ' p ' and a backward step with probability ' q '. After taking 11 steps, the probability that he is the one step away from the starting point is :
(1) $p^{6}+q^{6}$
(2) $2\left(p^{6}+q^{5}\right)$
(3) $462 p^{6} q^{5}$
(4) $462 p^{5} q^{5}$

PHD-EE-2023-24/(Statistics)(SET-Y)/(D)

D
24. For the sequence $\left\{X_{n}\right\}$ of independent random variables the following are defined : $P\left(X_{k}= \pm 2^{k}\right)=2^{-(2 k+1)} ; P\left(X_{k}=0\right)=1-2^{-2 k}$

Which of the following are not correct(s) ?
(a) WLLN holds because $E\left(X_{k}\right)=0$ and $\lim _{n \rightarrow \infty} \frac{B_{n}}{n^{2}} \rightarrow 0$ where $B_{n}=\operatorname{Var}\left(\Sigma_{i=1}^{n} X_{i}\right)$
(b) Weak law of large numbers holds by Khinchin's theorem because $E\left(X_{k}\right)$ is finite.
(c) WLLN holds since X_{k} are identically distributed.

Select the correct answer using code given below :
(1) (b) and (c) only
(2) (a) and (b) only
(3) (a) and (c) only
(4) (a), (b) and (c) only
25. If $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and σ_{X-Y}^{2} are the variances of X, Y and $X-Y$ respectively, then what is the coefficient of correlation between ' X ' and ' Y ' ?
(1) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X-Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(2) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(3) $\frac{\sigma_{X}^{2}+\sigma_{Y}^{2}-\sigma_{X+Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
(4) $\frac{\sigma_{X}^{2}-\sigma_{Y}^{2}}{2 \sigma_{X} \sigma_{Y}}$
26. Let ' X ' and ' Y ' be independent Gamma $G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$ random variables respectively. Then $\frac{X}{X+Y}$ is distributed as :
(1) $G\left(\alpha_{1}+\alpha_{2}, \beta\right)$
(2) $\beta_{1}\left(\alpha_{1}, \alpha_{2}\right)$
(3) $U(0,1)$
(4) $G\left(\alpha_{1}, \alpha_{2}\right)$
27. The Joint Density Function of ' X ' and ' Y ' is given by :
$f(x, y)=\left\{\begin{array}{cc}2 e^{-x} e^{-2 y} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{array}\right\}$
What is the value of $\mathrm{P}(\mathrm{X}<\mathrm{Y})$?
(1) $1 / 3$
(2) $1 / 2$
(3) $1 / 4$
(4) $1 / 6$
28. For a certain frequency distribution, the numerical computation yields the following : Mean $=62$, Median $=65$, Coefficient of skewness $=-0.3$, then the standard deviation is equal to :
(1) 10
(2) 30
(3) 90
(4) 300
29. Let ' X ' be a random variable having Probability Density Function :
$f(x)=\left\{\begin{array}{cl}x / 2 & 0<x<1 \\ 1 / 2 & 1<x \leq 2 \\ (3-x) / 3 & 2<x \leq 3\end{array}\right\}$
Then $\mathrm{P}(1.5<\mathrm{X}<2.5 \mathrm{IX}>1)$ equals to :
(1) $3 / 8$
(2) $5 / 8$
(3) $1 / 2$
(4) $1 / 4$
30. Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be i.i.d. random variables with $E\left(X_{i}\right)=\mu$ and $\mathrm{E}\left(X_{i}^{2}\right)<\infty$, then the consistent estimator for μ is :
(1) $\frac{2 i^{2}}{n(n+1) \sum X_{i}}$
(2) $\frac{2}{n(n+1)} \sum i X_{i}$
(3) $\frac{2 i}{n(n+1)} \sum X_{i}$
(4) $\frac{2}{n(n+1)} \sum i^{2} X_{i}$
31. The pgf of a certain distribution is given as :
$P(s)=3 s^{2}-2 s+6$
What is the mean of this distribution?
(1) 2
(2) 3
(3) 4
(4) 5
32. The relation between student's $-t$ and F-distribution is :
(1) $F_{1,1}=t_{n}^{2}$
(2) $F_{n, 1}=t_{1}^{2}$
(3) $F_{1 . n}=t_{\infty}^{2}$
(4) $F_{1 . n}=t_{n}^{2}$
33. The minimum variance unbiased estimator of θ^{2} based on a sample of size ' n ' from $N(\theta 1)$ is :
(1) $\bar{X}^{2}-1 / n$
(2) $\bar{X}^{2}+1 / n$
(3) $\sum\left(X_{i}-\bar{X}^{2}\right) / n$
(4) $\sum\left(X_{i}-\bar{X}^{2}\right) /(n-1)$

D
34. The Bayes estimator of a parameter under squared error loss function is :
(1) Posterior mean
(2) Posterior median
(3) Posterior mode
(4) Posterior variance
35. The decision criteria in SPRT depends on the function of :
(1) Type I error
(2) Type II error
(3) Both type I and type II error
(4) Neither Type I nor Type II error
36. What is an unbiased estimator of θ for the distribution $f(x, \theta)=\theta e^{-\theta} x, x \geq 0$?
(1) $\frac{(n-1) \bar{X}}{n}$
(2) $\frac{(n-1)}{n \bar{X}}$
(3) $\frac{\bar{X}}{n-1}$
(4) $\frac{1}{(n-1) \bar{X}}$
37. Given a random sample :
$f(x, \theta)=\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha$
What is the MLE of α ?
(1) X
(2) $2 X$
(3) $\frac{X^{2}}{2}$
(4) $\frac{X}{2}$
38. For a particular hypothesis test, the probabilities of type I and type II errors are respectively, 0.05 and 0.09 . The power of the test is :
(1) 0.95
(2) 0.14
(3) 0.86
(4) 0.91
39. A random sample of 100 articles are taken from a batch of 2000 articles shows that the average diameter of the articles is 0.354 and a standard deviation 0.048 . What is the 95% confidence interval for the average diameter of the batch ?
(1) $(0.2934,0.4235)$
(2) $(0.3448,0.3632)$
(3) $(0.3021,0.3824)$
(4) $(0.3923,0.4212)$
40. Which of the following is true ?
(1) Unbiased estimator is always efficient.
(2) Consistent estimator is always unbiased.
(3) Unbiased estimator is always consistent.
(4) MLE is always a function of sufficient statistic.
41. Let ' f ' be a non-constant entire function. Which of the following properties is possible for 'f' for each $z \in \mathbb{C}$?
(1) $\operatorname{Re} f(z)=\operatorname{Im} f(z)$
(2) $|f(z)|<1$
(3) $\operatorname{Im}(\mathrm{z})<0$
(4) $f(z) \neq 0$
42. Let ' f ' and ' g ' be mesomorphic function on (\mathbb{C}. If ' f ' has a zero of order ' k ' at $z=a$ and z has a pole of order ' m ' at $\mathrm{z}=0$, then $\mathrm{g}(\mathrm{f}(\mathrm{z})$) has :
(1) a zero of order km at $z=a$
(2) a pole of order km at $z=a$
(3) a zero of order $\mathrm{lk}-\dot{\mathrm{m}} \mathrm{l}$ at $z=a$
(4) a pole of order $\mathrm{lk}-\mathrm{ml}$ at $z=a$
43. The set of vectors $X_{1}=(2,1,4), X_{2}=(-3,2,-1), X_{3}=(1,-3,-2)$ is :
(1) Linearly dependent
(2) Linearly independent
(3) Both of them
(4) None of these
44. Let a be 2×2 with $\operatorname{Det}(\mathrm{A})=1$ \& $\operatorname{Trace}(\mathrm{A})=3$, then $\operatorname{Trace}\left(A^{2}\right)$ is :
(1) 7
(2) 8
(3) 9
(4) 10
45. If A is (2×2) matrix over IR with $\operatorname{Det}(\mathrm{A}+\mathrm{I})=1+\operatorname{Det}(\mathrm{A})$, then we can conclude that :
(1) $\operatorname{Det}(A)=0$
(2) $A=0$
(3) $\operatorname{Tr}(\mathrm{A})=0$
(4) A is non-singular
46. If A is a square matrix, then $A+A^{\prime}, A A^{\prime}$ and $A^{\prime} A$ are :
(1) Symmetric
(2) Skew Symmetric
(3) Hermitian
(4) Skew Hermitian
47. If $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ provided limit on RHS exists. This result is known as :
(1) Cauchy 1st Theorem on Limits
(2) Cauchy 2nd Theorem on Limits
(3) Squeeze Principle
(4) Leibnitz' Rule
48. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is :
(1) 1
(2) 0
(3) e
(4) 2
49. Consider the sequence $a_{n}=\left(1+(-1)^{n} \frac{1}{n}\right)^{n}$ then :
(1) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=1$
(2) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=e$
(3) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
(4) $\lim _{n \rightarrow \infty} \operatorname{Sup}\left(a_{n}\right)=e, \lim _{n \rightarrow \infty} \operatorname{Inf}\left(a_{n}\right)=\frac{1}{e}$
50. If X and Y are standard normal variates with correlation coefficient ' ρ ' between them, then the correlation coefficient between X^{2} and Y^{2} is :
(1) $2 \rho-1$
(2) ρ^{2}
(3) ρ
(4) $\sqrt{\rho}$
51. Let Y_{1}, Y_{2}, Y_{3} be uncorrelated observations with common variance σ^{2} and expectations given by $\left(Y_{1}\right)=\beta_{1}, E\left(Y_{2}\right)=\beta_{2}$ and $E\left(Y_{3}\right)=\beta_{1}+\beta_{2}$ where β_{1} and β_{2} are unknown parameters. The best linear unbiased estimator of $\beta_{1}+\beta_{2}$ is :
(1) $\frac{1}{2}\left(Y_{1}+Y_{2}+Y_{3}\right)$
(2) $Y_{1}+Y_{2}$
(3) $\frac{1}{2}\left(Y_{1}+Y_{2}+2 Y_{3}\right)$
(4) $\frac{1}{2}\left(Y_{1}-Y_{2}-Y_{3}\right)$
52. Under the regulatory conditions, if λ_{n} is the likelihood ratio, then the asymptotic distribution of $-2 \log \lambda_{n}$ as $n \rightarrow \infty$ is :
(1) Normal distribution
(2) Chi square distribution
(3) F-distribution
(4) T distribution

D

10
53. If the pdf of a random variable ' X ' is $f(x, \theta)=1-\theta^{2}, 0 \leq x \leq \frac{1}{1-\theta^{2}}$ and if we reject $H_{0}: \theta=\frac{1}{2}$ against the alternative $H_{1}: \theta=\frac{3}{4}$ whenever $x \geq 1$, then what is the power of the test?
(1) $\frac{15}{16}$
(2) $\frac{1}{2}$
(3) $\frac{7}{16}$
(4) $\frac{9}{16}$
54. If $X_{1}, X_{2}, \ldots \ldots X_{n}$ is a random sample form poisson distribution with parameter ' λ ', then the maximum likelihood estimator of $\log \lambda$ is given by :
(1) $e^{\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)}$
(2) $\log \left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)$
(3) $e^{\left(\sum_{i=1}^{n} x_{i}\right)}$
(4) $\log \left(\sum_{i=1}^{n} X_{i}\right)$
55. Which of the following could be used as a test for autocorrelation up to third order ?
(1) Spearmen Correlation test
(2) The Breusch-Goldfrey test
(3) The Durbin Watson test
(4) The Gold-Fled Quandt test
56. The following equation represent a simultaneous equation model :

$$
\begin{aligned}
& K_{1}=\alpha_{1} K_{2}+\beta_{1} Z_{1}+u_{1} \\
& K_{2}=\alpha_{2} K_{1}+\beta_{2} Z_{2}+u_{2}
\end{aligned}
$$

OLS will suffer from simultaneous bias if :
(1) u_{1} is correlated with Z_{1}
(2) Z_{1} is correlated with Z_{2}
(3) K_{2} is correlated with u_{1}
(4) K_{1} is correlated with u_{1}
57. Having known the last census population ' P_{0} ' and growth rate ' r ', the population after ' n ' years based on compound interest formula will be :
(1) $\hat{P}_{t}=P_{0}(1+r)^{n}$
(2) $\hat{P}_{t}=P_{0}(1+n)^{r}$
(3) $\hat{P}_{t}=P_{0} /(1+r)^{n}$
(4) $\hat{P}_{t}=P_{0} /(1+n)^{r}$

D
58. Vital rates are customarily expressed as :
(1) Percentages
(2) Per Thousand
(3) Per Million
(4) Per Trillion
59. Age - Specific mortality rates fail to reveal :
(1) Mortality conditions
(2) Age-distribution of persons
(3) Sex Ratio
(4) All of the above
60. The relationship between NRR and GRR is :
(1) NRR and GRR are usually equal
(2) NRR can never exceed GRR
(3) NRR is generally greater than GRR
(4) None of the above
61. For a standard $n \times n$ Latin Square, how many different Latin squares can be obtained with the same standard?
(1) $n!(n-2)$!
(2) $(n-1)$! $(n-2)$!
(3) $n!(n-1)$!
(4) $n!(n+1)$!
62. The condition for the time reversal test to hold good with usual notations is :
(1) $P_{01} \times P_{10}=1$
(2) $P_{10} \times P_{01}=0$
(3) $P_{01} / P_{10}=1$
(4) $P_{01}+P_{10}=1$
63. Weight in Laspeyre's price index number is known as
(1) Quantity during the current year
(2) Quantity in the base year
(3) Price during the current year
(4) Price in the base year
64. In India, the collection of vital statistics started for first time in :
(1) 1720
(2) 1886
(3) 1969
(4) 1946
65. Fisher's ideal formula does not satisfy \qquad
(1) Time Reversal Test
(2) Circular Test
(3) Factor Reversal Test
(4) Unit Test
66. If l_{x} is the number of persons living at the age ' x ' and ' L_{x} ' the number of persons living in the mid of ' x ' and ' $(x+1)$ ' years, then the relation between l_{x} and L_{x} is :
(1) $L_{x}=\frac{1}{2}\left(l_{x}+l_{x+1}\right)$
(2) $L_{x}=\left(\frac{x}{2}+l_{x}\right)$
(3) $L_{x}=l_{x+\frac{1}{2}}$
(4) $L_{x}=l_{x+\frac{3}{2}}$
67. Fertility rates mainly depend on :
(1) Total female population
(2) Total population
(3) Female population of child bearing age
(4) Number of newly born babies
68. If the quantity demanded of a commodity is unresponsive to change in prices, then the demand of that commodity is :
(1) Perfectly Inelastic
(2) Elastic
(3) Unit Elastic
(4) Inelastic
69. The elasticity for the demand of the durable goods is :
(1) Zero
(2) Equal to unity
(3) Greater than unity
(4) Less than Unity
70. Consider the following matrix :
$P=\left[\begin{array}{cccc}0 & 0 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 0\end{array}\right]$
If P is a stochastic matrix, then which of the following is not true?
(1) P is Ergodic
(2) P is Regular
(3) P is not Regular
(4) Both (1) and (3)
71. Service time in queueing theory is usually assumed to follow :
(1) Poisson Distribution
(2) Erlang Distribution
(3) Exponential Distribution
(4) Normal Distribution
72. For MIM11 queueing system, the expected number of customers in systems are :
(1) $L_{S}=\left(\frac{\lambda}{\mu-\lambda}\right)$
(2) $L_{S}=\left(\frac{\lambda-\mu}{\lambda}\right)$
(3) $L_{S}=\left(\frac{\mu}{\mu-\lambda}\right)$
(4) $L_{S}=\left(\frac{\mu-\lambda}{\lambda}\right)$
73. Which of the following relationships is not true ?
(1) $W_{S}=W_{q}+\frac{1}{\mu}$
(2) $L_{S}=\lambda W_{S}$
(3) $L_{S}=L_{q}+\frac{1}{\lambda}$
(4) $L_{q}=\lambda W_{q}$
74. Maximize $Z=10 x_{1}+25 x_{2}$, subject to $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 3, x_{1}+x_{2} \leq 5$
(1) 80 at $(3,2)$
(2) 75 at $(0,3)$
(3) 30 at $(3,0)$
(4) 95 at $(2,3)$
75. Which variable is added for the less than or equal to type of constraint ?
(1) Slack
(2) Surplus
(3) Artificial
(4) Basic
76. The convex combination of two points $\bar{x}_{1}, \bar{x}_{2} \in X$ is referred as :
(1) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(2) $(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
(3) $\bar{x}_{1}+\lambda \bar{x}_{2}, 0 \leq \lambda \leq 1$
(4) $\lambda \bar{x}_{1}+\lambda \bar{x}_{2}, \lambda$ is any real number
77. The assignment problem is :
(1) non-linear programming problem
(2) dynamic programming problem
(3) integer linear programming problem
(4) integer non-linear programming problem
78. The order of Convergence of Secant Method is :
(1) 2.4
(2) 2
(3) 1.62
(4) 1
79. If $f(0)=3, f(1)=5, f(3)=21$, then the unique polynomials of degree 2 or less using Newton divided difference interpolation will be :
(1) $2 x^{2}+2 x+1$
(2) $2 x^{2}-3 x+1$
(3) $2 x^{2}+3$
(4) $x^{2}+3 x-2$
80. The third difference of a cubic $\Delta^{3} y$ function are :
(1) Constant
(2) Not constant
(3) Variables
(4) None of the above
81. The mean of Binomial distribution $B(n, p)$ is :
(1) $n p$
(2) $n p-1$
(3) $n p-2$
(4) $n p-3$
82. Given that $E[X+4]=10$ and $E[X+4]^{2}=116$, then $\operatorname{Var}[X]$ is equal to :
(1) 4
(2) 8
(3) 12
(4) 16
83. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of ' a ' is given by :
(1) 0.4
(2) 0.5
(3) 0.3
(4) 0.1
84. Let ' X ' be a continuous random variable with Probability Density Function $f(x)=\left\{\begin{array}{cc}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ -a x+3 a, & 2 \leq x \leq 3 \\ 0, & x>3\end{array}\right.$
Then the value of $P(X \leq 1.5)$ is given by :
(1) 0.5
(2) 0.81
(3) 0.19
(4) 0.17

D
85. The moment generating function of Poisson Distribution is :
(1) $e^{\lambda}\left(e^{t}-1\right)$
(2) $e^{t}\left(e^{\lambda}-1\right)$
(3) $e^{t}-1$
(4) $e^{\lambda}\left(1-e^{t}\right)$
86. Which of the following is the median of the exponential distribution with parameter λ ?
(1) λ
(2) $-\lambda^{-1}$
(3) λ^{-1}
(4) λ^{-2}
87. The Quartile Deviation of the normal distribution is :
(1) Q. D. $=\frac{2}{4} \sigma$
(2) Q. D. $=\frac{2}{3} \sigma$
(3) Q. D. $=\frac{2}{5} \sigma$
(4) Q. D. $=\frac{3}{4} \sigma$
88. If A and B are two independent events, then $P(\bar{A} \cap \bar{B})$ is equal to :
(1) $P(\bar{A}) P(\bar{B})$
(2) $1-P(A \cup B)$
(3) $[1-P(A)][1-P(B)]$
(4) All of the above
89. If event A and event B has occurred and it is known that $P(B)=1$, the conditional probability $P(A / B)$ is equal to :
(1) $P(A)$
(2) $P(B)$
(3) One
(4) Zero
90. The recurrence formula for geometric distribution is given by :
(1) $p(x+i)=q p(x+i)$
(2) $p(x)=q p(x+i)$
(3) $p(x+i)=q p(x)$
(4) $p(x)=p(x+i)$
91. The correct relationship between A.M, G.M., and H.M. is :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M
92. Average wages of workers of factory are Rs. 550 per month and the standard deviation of wages is 110 . The coefficients of variation is :
(1) 30%
(2) 15%
(3) 500%
(4) 20%
93. If the mode of a frequency distribution is 16 and its mean is 16 , then the median of the distribution is :
(1) 0
(2) 16
(3) 32
(4) 8
94. If Quartile deviation of a set of observations is given as 6.4 and the value of first quartile is 5 . What is the value of the third quartile?
(1) 12
(2) 15.3
(3) 17.8
(4) 20.2
95. For a leptokurtic frequency curve, the measures of kurtosis is :
(1) 0
(2) -3
(3) less than 1
(4) greater than 3
96. Standard error of the sample correlation coefficient ' r ' is based on ' n ' paired values is :
(1) $\frac{1+r^{2}}{\sqrt{n}}$
(2) $\frac{1+r^{2}}{n}$
(3) $\frac{1-r^{2}}{\sqrt{n}}$
(4) $\frac{1+r^{2}}{\sqrt{n-1}}$
97. Given the following set of equations :

$$
\begin{gathered}
x_{1}+4 x_{2}-x_{3}=3 \\
5 x_{1}+2 x_{2}+3 x_{3}=4
\end{gathered}
$$

The basic feasible solution involving x_{1} and x_{2} is :
(1) $\left(\frac{5}{9}, \frac{11}{18}, 0\right)$
(2) $\left(\frac{5}{9}, 0,0\right)$
(3) $\left(0, \frac{11}{18}, 0\right)$
(4) $\left(\frac{2}{9}, 0, \frac{3}{14}\right)$
98. The range of a partial correlation coefficient is :
(1) 0 to ∞
(2) $-\infty$ to ∞
(3) 0 to 1
(4) -1 to 1
99. The term regression was introduced by :
(1) Sir Francis Galton
(2) R.A. Fisher
(3) Karl Pearson
(4) P.C. Mahalanobis
100. If Regression Equations are :

$$
\begin{gathered}
6 y=5 x+90 \\
15 x=8 y+30
\end{gathered}
$$

And the variance of $x=4$, then the correlation coefficient between ' x ' and ' y ' is :
(1) 0.45
(2) 0.67
(3) 0.78
(4) 0.88

$\sqrt{609} 52213124$

